ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
导读
对Boston(波士顿房价)数据集进行特征工程,分别使用特征列分段技术、独热编码技术,然后利用xgboost算法进行预测,发现的确能够进一步提高预测结果。
相关文章
ML之XGBR:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)
输出结果
设计思路
核心代码
XGBR = XGBRegressor()
cv_split = ShuffleSplit(n_splits, train_size, test_size)
XGBR_grid = GridSearchCV(XGBR, grid_params, cv=cv_split)
class XGBRegressor(XGBModel, XGBRegressorBase):
# pylint: disable=missing-docstring
__doc__ = "Implementation of the scikit-learn API for XGBoost regression.\n\n" + '\n'.join
(XGBModel.__doc__.split('\n')[2:])
赞 (0)