性能分析Linux服务器CPU利用率

1.  指标范围

1.1  User mode CPU utilization System mode CPU utilization

合理值:60-85%,如果在一个多用户系统中us sy时间超过85%,则进程可能要花时间在运行队列中等待,响应时间和业务吞吐量会受损害;us过大,说明有用户进程占用很多cpu时间,需要进一步的分析其它软硬件因素;sy过大,说明系统管理方面花了很多时间,说明该系统中某个子系统产生了瓶颈,需要进一步分析其它软硬件因素。

1.2  Wa(wait)

参考值:小于25%,超过25%的wa的值可以表示磁盘子系统可能没有被正确平衡,也可能是磁盘密集工作负载的结果,系统的磁盘或其它I/o可能有问题,可以通过iostat/SAR –C命令进一步分解分析

1.3  Id(idle)

参考值:大于40,如果r经常大于4,且id经常小于40,表示cpu的负荷很重

1.4  r

参考值:小于4,队列大于4时,表明系统的cpu或内存可能有问题,如果r经常大于4,且id经常少于40,表示cpu的负荷很重。当队列变长时,队列中进程在等待cpu调度执行时所花的时间会变长

1.5  判断cpu瓶颈的方法

很慢的响应时间(slow response time)

Cpu的空闲时间为零(zero percent idle cpu)

过高的用户占用cpu时间(high percent user cpu)

过高的系统占用cpu时间(high percent system cpu)

长时间的有很长的运行进程队列(large run queue size sustained over time)

2.  如何查看cpu利用率

2.1  使用top命令查看

数据来自/proc/stat文件

%us =(User time Nice time)/CPU时间*100%

%sy=(System time Hardirq time Softirq time)/ CPU时间*100%

%id=(Idle time)/CPU时间*100%

%ni=(Nice time)/CPU时间*100%

%wa=(Waiting time)/CPU时间*100%

%hi=(Hardirq time)/CPU时间*100%

%si=(Softirq time)/CPU时间*100%

%st=(Steal time)/CPU时间*100%

备注: top 命令默认情况下,是每 3 秒刷新一次。也可以通过 top  -d <刷新时间间隔> 来指定刷新频率,如top -d 0.1 或top -d 0.01 等。top 执行时,也可以按“s ”键,修改时间间隔。

2.2  使用vmstat查看

r表示运行队列的大小,b表示由于IO等待而block的线程数量,in表示中断的数量,cs表示上下文切换的数量。

2.3  其它查看方式

Iostat、sar  -q、sar –u等

3.  CPU介绍

3.1  内核中的时间

HZ是系统时钟在一秒内固定发出时钟中断的次数。HZ在编译内核前是可以进行配置的,因此通过下述命令就可以查看当前系统的时钟中断频率:cat /boot/config-`uname -r` | grep CONFIG_HZ

tick为系统时钟每“滴答“一次的时间,其值为(1/HZ)秒。也就是连续两次时钟中断之间的时间间隔。

jiffies用来计算自系统启动以来tick的次数,也就是说系统时钟每产生一次时钟中断,该变量的值就增加一次。

3.2  CPU时间组成

CPU的工作时间由三部分组成:用户态时间、系统态时间和空闲态时间。具体的组成为:

CPU时间包含User time、System time、Nice time、Idle time、Waiting time、Hardirq time、Softirq time、Steal time

空闲态时间==idle time

用户态时间==user time Nice time。

内核态时间==system time Hardirq time Softirq time。

user time。指CPU在用户态执行进程的时间。

system time。指CPU在内核运行的时间。

nice time。指系统花费在调整进程优先级上的时间。

idle time。系统处于空闲期,等待进程运行。

waiting time。指CPU花费在等待I/O操作上的总时间,与blocked相似。

steal time。指当前CPU被强制(involuntary wait )等待另外虚拟的CPU处理完毕时花费的时间,此时 hypervisor 在为另一个虚拟处理器服务。

Softirq time 、Hardirq time。分别对应系统在处理软硬中断时候所花费的CPU时间。

3.3  User mode CPU utilization

%usr。显示了用户方式下所花费CPU时间的百分比,用户使用CPU的进程包括:cpu运行常规用户进程,cpu运行niced process,cpu运行实时进程。一个linux进程可以在用户方式下执行,也可以在系统(内核)方式下执行,当一个进程在内核代码中运行时,我们称其处于内核态;当一个进程正在执行用户自己的代码时,我们称其处于用户态,在用户方式下执行时,进程在它自己的应用程序代码中执行,不需要内核资源来进行计算、管理内存或设置变量

3.4  System mode CPU utilization

显示了系统方式下所花费cpu时间的百分比,包括内核进程(kprocs)和其他需要访问内核资源的进程所消耗的cpu资源,系统使用cpu的进程包括:用于系统调用,用于I/O管理(中断和驱动),用于内存管理(paging and swapping),用于进程管理(context switch and process start),如果一个进程需要内核资源,它必须执行一个系统调用,并由此切换到系统方式从而使该资源可用。

3.5  %wa(wait)

显示了暂挂本地磁盘I/O和NFS加载的磁盘的cpu空闲百分比,是由于进程等待I/O而使cpu处于空闲状态的比率,I/O主要包括:block I/O,raw I/O,VM-paging/swapins。如果在wait运行时至少有一个未完成的磁盘I/O,该事件就归为I/O等待时间,对磁盘的I/O请求会导致调用的进程阻塞(或睡眠),直到请求完成为止,一旦进程的I/O请求完成,该进程就放入运行队列中。如果I/O很快完成,该进程可以使用更多的cpu时间。

3.6  %id(idle)

除了上面的WIO以外的空闲情况,显示了没有本地磁盘I/O时cpu空闲或等待的时间百分比。如果没有线程可以执行(运行队列为空),系统分派一个叫做wait的线程,可称为idle kproc。如果ps报告显示这个线程的总计时间较高,这表明存在时间段,其中没有其它线程准备在cpu上运行或等待执行。系统因此大部分时间空闲或等待新任务。

3.7  r(runq-sz)

运行进程队列的长度。对于可运行状态的进程个数的大小,这些进程在内存中准备就绪

4.  概念介绍

4.1  用户模式 内核模式

一般说来,一个进程在CPU上运行可以有两种运行模式,既可在用户模式下运行,又可在内核模式下运行(即进程分别工作在用户态和内核态,在内核态工作仍旧是这个进程,除非进行了进程的切换)。通常操作系统把虚拟地址空间划分为用户空间和内核空间,例如x86平台的Linux系统虚拟地址空间是0x00000000~0xffffffff,前3GB(0x00000000~0xbfffffff)是用户空间,后1GB(0xc0000000~0xffffffff)是内核空间。用户程序加载到用户空间,在用户模式下执行,不能访问内核中的数据,也不能跳转到内核代码中执行。这样可以保护内核,如果一个进程访问了非法地址,顶多这一个进程崩溃,而不会影响到内核和整个系统的稳定性。Cpu在产生中断或异常时不仅会跳转到中断或异常服务城西,还会自动切换模式,从用户模式切换到特权模式,因此从中断或异常服务器程序可以跳转到内核代码中执行。事实上,整个内核就是由各种中断和异常处理程序组成的。即,正常情况下处理器在用户模式执行用户程序,在中断或异常情况下处理器切换到特权模式执行内核程序,处理完中断或异常之后再返回用户模式继续执行用户程序,例如,用户进程A调用了内核系统调用来获取当前的时钟滴答数,在执行用户进程A中的系统调用指令时会保存当前用户进程的IP,CS等当前寄存器状态,然后再跳转到内核空间(即内核代码区域)去执行像应的系统调用函数,获取当前的时钟滴答数。执行完后再通过IRET指令返回到进程A中(就是将进入时保存的信息再复位到相应的寄存器中),再接着从CS:EIP地址开始执行A进程的指令

进程在创建的时候除了创建进程的控制块之外,在内核里还创建了进程的内核栈,进程通过系统调用(例如fopen()或者open())进入内核后,此时处理器处于特权级最高的(0级)内核代码中执行,当进程处于内核态时,执行的内核代码会使用当前进程的内核栈,是指向在进程的上下文上的,

内核模式的权限高于用户模式的权限。

用户级。系统用户可以与操作系统进行交互操作,如运行应用和系统命令,用户级通过系统调用接口访问内核级;内核级。操作系统自动运行一些功能,它们主要对硬件进行操作

4.2  进程调度

任何进程要想占有CPU,从而真正处于执行状态,就必须经由进程调度。进程调度机制主要涉及到调度方式、调度时机和调度策略。

1. 调度方式

Linux内核的调度方式基本上采用“抢占式优先级”方式,即当进程在用户模式下运行时,不管是否自愿,在一定条件下(如时间片用完或等待I/O),核心就可以暂时剥夺其运行而调度其它进程进入运行。但是,一旦进程切换到内核模式下运行,就不受以上限制而一直运行下去,直至又回到用户模式之前才会发生进程调度。

Linux系统中的调度策略基本上继承了Unix的以优先级为基础的调度。就是说,核心为系统中每个进程计算出一个优先权,该优先权反映了一个进程获得CPU使用权的资格,即高优先权的进程优先得到运行。核心从进程就绪队列中挑选一个优先权最高的进程,为其分配一个CPU时间片,令其投入运行。在运行过程中,当前进程的优先权随时间递减,这样就实现了“负反馈”作用:经过一段时间之后,原来级别较低的进程就相对“提升”了级别,从而有机会得到运行。当所有进程的优先权都变为0时,就重新计算一次所有进程的优先权。

2. 调度策略

Linux系统针对不同类别的进程提供了三种不同的调度策略,即SCHED_FIFO、SCHED_RR及SCHED_OTHER。

SCHED_FIFO适合于实时进程,它们对时间性要求比较强,而每次运行所需的时间比较短,一旦这种进程被调度开始运行后,就要一直运行到自愿让出CPU,或者被优先权更高的进程抢占其执行权为止。

SCHED_RR对应“时间片轮转法”,适合于每次运行需要较长时间的实时进程。一个运行进程分配一个时间片(如200毫秒),当时间片用完后,CPU被另外进程抢占,而该进程被送回相同优先级队列的末尾。SCHED_OTHER是传统的Unix调度策略,适合于交互式的分时进程。这类进程的优先权取决于两个因素,一个因素是进程剩余时间配额,如果进程用完了配给的时间,则相应优先权为0;另一个是进程的优先数nice,这是从Unix系统沿袭下来的方法,优先数越小,其优先级越高。

nice的取值范围是19-20。用户可以利用nice命令设定进程的nice值。但一般用户只能设定正值,从而主动降低其优先级;只有特权用户才能把nice的值置为负数。进程的优先权就是以上二者之和。核心动态调整用户态进程的优先级。这样,一个进程从创建到完成任务后终止,需要经历多次反馈循环。当进程再次被调度运行时,它就从上次断点处开始继续执行。对于实时进程,其优先权的值是(1000+设定的正值),因此,至少是1000。所以,实时进程的优先权高于其它类型进程的优先权。另外,时间配额及nice值与实时进程的优先权无关。如果系统中有实时进程处于就绪状态,则非实时进程就不能被调度运行,直至所有实时进程都完成了,非实时进程才有机会占用CPU。

后台命令(在命令末尾有&符号,如gcc f1.c& )对应后台进程(又称后台作业),后台进程的优先级低于任何交互(前台)进程的优先级。所以,只有当系统中当前不存在可运行的交互进程时,才调度后台进程运行。后台进程往往按批处理方式调度运行。

3. 调度时机

核心进行进程调度的时机有以下几种情况:

(1)当前进程调用系统调用nanosleep( )或pause( )使自己进入睡眠状态,主动让出一段时间的CPU使用权;

(2)进程终止,永久地放弃对CPU的使用;

(3)在时钟中断处理程序执行过程中,发现当前进程连续运行的时间过长;

(4)当唤醒一个睡眠进程时,发现被唤醒的进程比当前进程更有资格运行;

(5)一个进程通过执行系统调用来改变调度策略或降低自身的优先权(如nice命令),从而引起立即调度。

4. 调度算法

进程调度的算法应该比较简单,以便减少频繁调度时的系统开销。Linux执行进程调度时,首先查找所有在就绪队列中的进程,从中选出优先级最高且在内存的一个进程。如果队列中有实时进程,那么实时进程将优先运行。如果最需要运行的进程不是当前进程,那么当前进程就被挂起,并且保存它的现场所涉及的一切机器状态,包括程序计数器和CPU寄存器等,然后为选中的进程恢复运行现场。

4.3  用户级线程与内核级线程

在许多类Unix系统中,如Linux、FreeBSD、Solaris等,进程一直都是操作系统内核调用的最小单位,程序开发也都采用多进程模型。后来引入了线程概念,有以下两种概念的线程:

用户级线程(User-Level Thread,ULT)。由应用进程利用线程库创建和管理,不在内核中实现线程,只在用户态中模拟出多线程,不依赖于操作系统核心,操作系统内核完全不知道多线程的存在。

内核线线程(Kernel-Level Thread,KLT),又称为内核支持的线程或轻量级进程。是在核心空间实现的,内核为每个线程在核心空间中设置了一个线程控制块,用来登记该线程的线程标识符、寄存器值、状态、优先级等信息,所有对线程的操作,如创建、撤销和切换都是通过系统功能调用由内核中的相应处理程序完成,内核维护进程及线程的上下文切换以及线程切换,类unix系统中一般通过修改进程的实现方式来实现,可以使用不完全的进程创建方式创建共享数据空间的进程,在 Linux下这种系统调用为clone(),而在FreeBSD下它为rfork()。

5.  常见误区

5.1  Cpu利用率很高就是cpu资源不够

出现cpu计数器不在范围时,不一定是由于cpu资源不够,因为其他资源的也会引起,例如内存不够时,cpu会忙内存管理的事,表面上可能是cpu的利用为100%

转载他人便于保存查看。

来源:https://www.icode9.com/content-3-784101.html

(0)

相关推荐

  • Linux 调度系统全景指南(上篇)

    本文主要是讲Linux的调度系统, 由于全部内容太多,分三部分来讲,调度可以说是操作系统的灵魂,为了让CPU资源利用最大化,Linux设计了一套非常精细的调度系统,对大多数场景都进行了很多优化,系统扩 ...

  • 一文读懂 | CPU负载均衡实现

    (图1) 最极端的情况是,一个 CPU 的可运行进程队列拥有非常多的进程,而其他 CPU 的可运行进程队列为空,这就是著名的 一核有难,多核围观,如下图: (图2) 为了避免这个问题的出现,Linux ...

  • 深入分析 Java、Kotlin、Go 的线程和协程

    前言 协程是什么 协程的好处 进程 进程是什么 进程组成 进程特征 线程 线程是什么 线程组成 任务调度 进程与线程的区别 线程的实现模型 一对一模型 多对一模型 多对多模型 线程的"并发& ...

  • 超全整理!Linux 性能分析工具汇总

    出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章.本文也可以作为检验基础知识的指标,另外文章涵盖了一个系统的方方面面.如果没有完善的计算机系统知识,网络知识和操作系统知识, ...

  • 干货:Linux 服务器的性能参数指标总结

    文章转自:twt企业IT社区 一个基于 Linux 操作系统的服务器运行的同时,也会表征出各种各样参数信息.通常来说运维人员.系统管理员会对这些数据会极为敏感,但是这些参数对于开发者来说也十分重要,尤 ...

  • 英特尔10nm服务器CPU来了,性能相比前代提升46%

    英特尔首款10nm工艺的服务器处理器来了. 刚刚,英特尔发布了基于Ice Lake的第三代至强可扩展处理器. 第三代至强可扩展处理器覆盖从最低端的8核至强白银4309Y到最高端的40核至强铂金8380 ...

  • Linux 服务器的性能参数指标总结

    重磅干货,第一时间送达 转自:twt企业IT社区 一个基于 Linux 操作系统的服务器运行的同时,也会表征出各种各样参数信息.通常来说运维人员.系统管理员会对这些数据会极为敏感,但是这些参数对于开发 ...

  • 如何查看 Linux 服务器性能参数指标?

    Go开发大全 20篇原创内容 公众号 一个基于 Linux 操作系统的服务器运行的同时,也会表征出各种各样参数信息.通常来说运维人员.系统管理员会对这些数据会极为敏感,但是这些参数对于开发者来说也十分 ...

  • 中低温焊接容器板SA612M性能分析

    SA612M是一种中低温焊接压力容器用镇静C-Mn-Si钢板 其主要技术条件如下 一.适用范围 本技术协议适用于最大厚度25mm的中低温焊接压力容器用镇静C-Mn-Si钢板的生产及检验. 二.SA61 ...

  • 美标中、低温压力容器用钢板SA516Gr70性能分析

    美标中、低温压力容器用钢板SA516Gr70性能分析

  • 服务器CPU与普通家用CPU之间有什么区别?

    CPU,就是中央处理器,是一台电脑的核心.作为PC的核心部件,CPU同时兼具运算核心和控制核心两大使命,可以说是最重要的配件.不过在不同的产品线,CPU的构造和功用也并不相同,比如企业和消费领域的CP ...

  • 着陆性能分析工作及要求汇总!

    本文综合了两篇写于2005年的国内<着陆性能分析工作调研报告>和国外考察报告.关于机组在到达时空中着陆距离评估工作,民航局飞标司在2009年12月下发的<航空承运人湿跑道和污染跑道运 ...