填空题讲解57:二次函数有关的综合题

如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,已知点ABCD分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得线段CD的长     .
参考答案:
考点分析:
二次函数综合题.
题干分析:
x=0代入抛物线的解析式得y=﹣3,故此可得到DO的长,然后令y=0可求得点A和点B的坐标,故此可得到AB的长,由M为圆心可得到MCOM的长,然后依据勾股定理可求得OC的长,最后依据CD=OC+OD求解即可.
初中数学函数知识主要覆盖到这三种函数:一次函数(包括正比例函数)、反比例函数、二次函数。而其中最为重要的就是二次函数,纵观全国各地很多中考试卷,我们都会发现绝大部分压轴题都和二次函数密切相关,要那么就是与二次函数相关的函数综合问题,或是函数与几何结合综合性问题等等。
因此,很多人都会说,要想考取中考高分,首先要过二次函数的关卡。话或许有些夸张,但这也突出二次函数的重要性。
(0)

相关推荐

  • 【名师支招】一题贯穿二次函数综合(二)线段问题

    以微课堂 公益课堂,奥数国家级教练 与四位特级教师联手执教. 上个专题中,我们探究了二次函数综合题中的线段问题 (一题贯穿二次函数综合(一)--线段问题) 本专题我们继续探究二次函数中的线段问题. 如 ...

  • 【压轴题打卡460:二次函数有关的综合题...

    [压轴题打卡460:二次函数有关的综合题分析] 如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=-2x-1经过抛物线上一点B(-2,m)且与y轴交 ...

  • 填空题讲解86:二次函数有关的综合题

    抛物线y=﹣4x²/9+8x/3+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是      时,|PA﹣PB|取得最小值. 参考答案: 考点分析: 二次函数的性质:轴对称﹣最短路线 ...

  • 压轴题打卡122:二次函数有关的综合题

    如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3√3),B(4,0)两点. (1)求出抛物线的解析式: (2)在坐标轴上是否存在点D,使得△ABD是以线段AB为 ...

  • 压轴题打卡123:二次函数有关的综合题

    在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点. (1)求抛物线的解析式: (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m ...

  • 选择题攻略97:二次函数有关的综合题

    二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下  列结论中正确的个数有( ) ①4a+b=0:           ②9a+3b+c< ...

  • 压轴题打卡128:二次函数有关的综合题

    已知抛物线y=x2/4+1(如图所示). (1)填空:抛物线的顶点坐标是(  ,  ),对称轴是x=0(或y轴) : (2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若 ...

  • 压轴题打卡129:二次函数有关的综合题

    如图,已知抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B. (1)若直线y=mx+n经过B.C两点,求直线BC和抛物线的解析式: ...

  • 选择题攻略102:二次函数有关的综合题

    如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( ) 参考答案: 解:A.根据图示知,抛物线开口方向向上,则a>0. 抛物线的 ...

  • 压轴题打卡132:二次函数有关的综合题分析

    如图,抛物线y=x2/2+bx﹣2与x轴交于A.B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的解析式及顶点D的坐标: (2)判断△ABC的形状,证明你的结论: (3)点M是x轴上的一个动 ...

  • 选择题攻略104:二次函数有关的综合题分析

    如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A.B的横坐标分别为﹣1和3,则下列结论正确的是( ) 参考答案: 考点分析: 二次函数图象与系数的关系. 题干分析 ...