快速了解高分子取向性
戳我进入社区:注塑和模具人的网上家园
塑料分子取向性是受外力的作用,高分子链被拉直拉长,同时球晶体也被拉长。分子取向是在外力作用下的一种形变,分子的形变能提高其拉伸强度和冲击强度。
但在取向垂直方向上其拉伸强度有所下降,冲击强度也有所降低,所以说分子取向有方向性。塑料加工在高弹态时易控制分子取向性,在粘流态时不可控制分子取向性。
挤出成型是塑料在高弹态下加工,可控制拉伸倍数、牵引力和速度,如塑料丝、膜、管、片和板等制品。
注射成型是塑料在粘流态下加工,分子取向无序,受力的大小不同,冻结速度不一样,造成制品各处的内应力大小不同,发生变形翘曲。所以注射成型加工不希望有较大的冻结分子取向性。
1. 分子取向性与温度关系:
注塑成型分子取向是在温度和压力作用下的冻结取向。当模具打开时,模具内的型腔压力全部消失,但制品一般不可能冷却到常温,等制品在模外冷却到常温这段时间,制品中的分子产生解取向,取向程度就下降。
所以分子取向性与温度变化有关,当塑料熔体温度提高,模具温度升高,制品壁厚增厚,冷却时间缩短,分子取向性下降,反之增大。在注射成型过程中分子有在等温下流动取向和非等温下流动取向。
在等温下分子流动取向的力和量是一样的,但在非等温分子流动取向力和量均不一致,易引起内应力的不一致,造成制品变形等质量问题。
2. 分子取向与压力速度关系:
塑料分子取向因受力的形式和作用性质不同,可分为剪切应力分子取向,即流动取向和受牵引作用的拉伸取向。流动分子取向有单轴或双轴取向,并沿着流动方向有序排列。分子取向是与作用力成正比。
注塑成型分子取向性是将熔融塑料在注射压力的作用下,射入模具型腔,并在注射和保压压力的继续作用下冻结,分子取向性大小与冻结时的压力成正比。
3. 分子取向残余应力与骤冷应力:
分子取向残余应力是制品成型冷却时的冻结取向应力和构型体积应变应力。制品的冻结分子链在失压下,并在使用温度和环境温度的变化中,成型制品中原拉直和拉长的链锻要恢复到此时的自由状态,分子链产生卷曲,制品就产生变形,这种情况会持续到该塑料原始自由状态,制品变形才停止。
构型体积应变是由于制品的几何形状变化,造成不同的分子取向应力。制品内应力不同,收缩情况也不同。制品的冻结应力和型体应力,会造成制品的裂缝和受热后尺寸不稳定等变化。
骤冷应力是制品在成型冷却过程中,模温极低,制品的冷却速度极快情况下,造成分子取向力不一致,在厚制品上易出现气泡或凹痕。
4. 结晶形塑料与非结晶形塑料的取向性。
非结晶形塑料取向松弛的时间从失压到玻璃态,结晶形塑料取向松弛的时间从失压到熔点。
因冷却到熔点温度比冷却到玻璃态温度,当然到熔点温度高,所以冷却时间短。因此在同等成型条件下,非结晶形塑料解取向时间长,制品取向应力小,结晶型塑料解取向时间短,不易解取向,取向性就大。
5. 怎样减少分子取向性:
分子取向性随着分子链越长越多取向性越大,并受压力,冻结温度和时间的变化而变化。可在选材和工艺上进行调整和控制,来减小注塑制品的分子取向性。
提高熔体和模具温度,使取向效应降低。
降低注射压力,保压压力和时间,分子取向性降低。
浇口减小制品的分子取向性小。
制品壁簿、模具温度极低,制品来不及取向就冷却,取向效应减少。
快速冲模时熔体在高剪切力的作用下,熔体温度升高,粘度降低,模具型腔被迅速冲满并快速冷却,取向力也小。
90%的人看完这篇文章会
长按关注以下视频号观看各种小视频
十万注塑和模具人都在
关注的模具和注塑视频号