相关推荐
-
高中向量内容小结和分析
向量在高中数学中最重要的是作为工具的作用.高考中,向量难度一般不大,应用广泛,既可以考纯向量,在高考中常考一个5分的小题:向量也可以与三角.解三角形.平面几何.立体几何.圆锥曲线等知识结合出题.既可以 ...
-
新版高中数学必修二习题10——向量数量积的坐标表示(带解析)
新版高中数学必修二习题10——向量数量积的坐标表示(带解析)
-
高一数学MOOK | 巧用向量数量积的几何意义解题
高中数学MOOK 作者:孙莎 第20期 ▼ 角形,这时需要我们利用图形的特点,构造直角三角形,如下面的例题. [点评]例4主要利用圆中直径所对的圆周角为直角,构造出直角三角形,并结合向量数量积的几何意 ...
-
高中数学——16条圆锥曲线中的几何性质(...
高中数学--16条圆锥曲线中的几何性质(非常经典,含结论证明过程) 焦点三角形面积公式.内切性质,焦半径,定值模型等等,多思考
-
妙招制胜:高中数学想考130 ?导数证明函数不等式,一定要掌握
一直以来,导数题都是同学们心中的噩梦,因为这两个字很大程度上就等于压轴! 特别是导数题的题型种类较多,比如和不等式的结合,考察比较灵活,常见的就是恒成立求参数和证明问题了.都是属于技巧性比较强的问题, ...
-
三种方法解决向量数量积最值的问题,首推极化恒等式
三种方法解决向量数量积最值的问题,首推极化恒等式
-
高中数学:大招来了,几何类型题的7种解法,学渣看了也能逆袭
高考想考高分,数学的成绩一定不能差,但是想学好数学也不是一朝一夕的事. 不少同学在写数学试卷时都会遇到以下一些问题: 1.拿到题目,不知道该从何下手,从哪里寻找突破口. 2.做题速度太慢,后面的大题没 ...
-
解析考前训练7.用极化恒等式解决向量数量积取值范围问题
在向量取值范围问题中我们最常用的方法是将向量坐标化,然后再利用常见的函数或不等式解决最值问题,而最值问题的产生原因一般都是题目中出现了不确定的动点,今天给出用向量的极化恒等式解决含有动点的数量积取值范 ...
-
高中数学中常见的不等式证明方法,一文让你读懂
由原来的判断极值点的个数,现在进行逆向命题,也就说告诉函数在某个区间内有几个极值点,反求参数性的问题,导数压轴一直承载着为一等大学选拔人才的任务,所以历年的考题都是让人头疼恐惧的事情.导数考题一般情况 ...
-
向量数量积的物理意义
数量积,也叫点乘,也叫向量的内积.顾名思义,求下来的结果是一个数.向量a·向量b=|a||b|cos<a,b> .在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘 ...