【多元函数】图解高等数学-下 09
11.1 多元函数
二元函数
定义 二元函数假定 D 是有序实数对 (x,y) 的集合. D 上的二元实函数 f 是一个规则, 它对 D 内的每个有序对 (x,y) 有唯一对应的实数 w=f(x,y). D 为 f 的定义域, w 的值的集合是值域.
内点, 边界点, 开集, 闭集
xy 平面上的集合 R 的一个点 (x0,y0) 是完全含于 R 内的圆盘的中心, 称为 R 的内点(Interior Point).
一个点 (x0,y0) 是 R 的边界点(Boundary Point), 如果每个以 (x0,y0) 为中心的圆盘有不属于 R 的点, 也有属于 R 的点.
如果一个集合完全由内点组成, 则称为开集. 如果一个集合包含它的所有边界点, 则称为它为所有边界点, 则称为它为闭集.
平面有界集合比如: 线段, 三角学, 三角学内部, 矩形, 圆周和圆盘. 无界集合: 直线, 坐标轴, 定义在无穷区间上的函数图形, 象限, 半平面和平面.
二元函数的图形和等位线
在平面内, 二元函数取常数值 f (x, y) = c 的点组成函数定义域内的曲线.
观察下图 f(x,y)=xe−x2−y2 的图形及等位线和等高线图形.
三元或更多元函数
三元函数 f 是对空间的某个定义域 D 的每三元组(x,y,z) 指定一个唯一的实数 w=f(x,y,z) 的规则.
三元函数的等位面
在空间内, 三元函数取常数值 f(x,y,z)=c 的点组成函数定义域内的曲面, 称之为等位面.
因为三元函数的图形由点 (x,y,z,f(x,y,z)) 组成, 在四维空间内, 无法在三维空间内绘制出来. 不过可以通过观察它的三维等位面了解它的行为.
比如下面动画, 观察函数定义域的等位面. 等位面在定义域内移动时显示函数值的变化. 可以看到常数值等于 1,2,3 时候的球面(为了更方便观察内部结构, 只显示出3/4体积). 假如离开原点的话, 函数值就会增加, 反之亦然. 函数值的改变依赖于移动的方向.