单个肿瘤病人的外显子数据分析策略
肿瘤外显子测序相信大家都不陌生了,通常都是大队列研究,首先WES相比较于WGS已经是大幅度降低成本了,其次太多超级肿瘤队列已经发表了。如果你的100人以下的肿瘤外显子队列研究仍然是想发表,一般来说靠的是疾病的特殊性了。
但是实际上肿瘤外显子队列是很烧钱的,通常来说,一个肿瘤病人需要测50X的血液加上200X的肿瘤,基本上3000块钱是跑不了的,100人的队列就是三十好几万了。而且收集100个肿瘤病人也只能说是背靠大医院平台了。
那,有没有可能单个肿瘤病人,测一下外显子数据,也是一个独立的课题呢?
有的,我看到了一个免疫原性突变研究,发表在影响因子10分左右的CCR,2017年8月,标题是:《Characterization of an Immunogenic Mutation in a Patient with Metastatic Triple-Negative Breast Cancer》,链接是:https://clincancerres.aacrjournals.org/content/23/15/4347
病人基本信息:Tumor 4062 (lung) was resected from a 61-year-old woman diagnosed with metastatic TNBC
选择的测序是:
Whole-exome sequencing (WES) was performed at Personal Genome Diagnostics (PGDx) mRNA sequencing library
但是并没有上传共享测序数据,也仅仅是描述WES数据分析流程。所以虽然你可以follow我的教程来处理这些数据,但是巧妇难为无米之炊哦:
文章描述的生物信息学数据分析流程是;
GATK best practices workflow (https://www.broadinstitute.org/gatk/). After cleanup of data, samtools mpileup (http://samtools.sourceforge.net) was used to create pileup files, Varscan2 (http://varscan.sourceforge.net) was used to call somatic variants. These variants were annotated using Annovar (http://annovar.openbioinformatics.org). Variant frequency cutoff of ≥10% and ≥2 variant reads in tumor. The segmented copy number, cellularity, and ploidy were determined using Sequenza v2.1.2 with normal samples as references and hg19 coordinates.
数据分析结果:
72 nonsynonymous point mutations were identified after WES of the lesion, 43 of which were expressed on the basis of RNA-seq data
有意思的是病人的结局并不美好:however, the patient's disease progressed rapidly, and she expired prior to treatment. At autopsy, the RBPJ mutation was detected in all 16 sites of metastases。
如果是6年前,
于December 2014发表在Human Genomics 杂志的标题是:《Whole exome sequencing of a single osteosarcoma case—integrative analysis with whole transcriptome RNA-seq data》就无需那么多花样了,测序出来了简单描述你的数据分析就足够了。
链接是:https://humgenomics.biomedcentral.com/articles/10.1186/s40246-014-0020-0
文末友情推荐
。如果大家没有时间自行慢慢摸索着学习,可以考虑我们生信技能树官方举办的学习班。