实现特征缩放和特征归一化的方法有哪些?(附代码)

本文将为你介绍实现特征缩放和特征归一化的方法。

1. 特征缩放

在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提高算法的收敛速度。

1.1 什么是特征缩放

特征缩放是用来标准化数据特征的范围。

1.2 机器算法为什么要特征缩放

特征缩放还可以使机器学习算法工作的更好。比如在K近邻算法中,分类器主要是计算两点之间的欧几里得距离,如果一个特征比其它的特征有更大的范围值,那么距离将会被这个特征值所主导。因此每个特征应该被归一化,比如将取值范围处理为0到1之间。

在梯度下降法中,当有多个特征向量的时候,如果其中一个变化范围比较大,则该特征向量的参数可能会变化范围很大,从而主导整个梯度下降的过程,使得整个收敛轨迹变得复杂,让收敛的时间更长。

2. 特征缩放的方法

2.1 调节比例(Rescaling)

这种方法是将数据的特征缩放到[0,1]或[-1,1]之间。缩放到什么范围取决于数据的性质。对于这种方法的公式如下:

  1. x' = \frac{x - min(x)}{max(x) - min(x)}

$x$是最初的特征值, $x'$是缩放后的值。

2.2 标准化(Standardization)

特征标准化使每个特征的值有零均值(zero-mean)和单位方差(unit-variance)。这个方法在机器学习地算法中被广泛地使用。例如:SVM,逻辑回归和神经网络。这个方法的公式如下:

  1. x' = \frac{x - \bar x}{\sigma}

3. 特征归一化

3.1 为什么要进行特征归一化

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。

3.2 特征归一化的意义

  • 各特征之间的大小范围一致,才能使用距离度量等算法

  • 加速梯度下降算法的收敛

  • 在SVM算法中,一致化的特征能加速寻找支持向量的时间

  • 不同的机器学习算法,能接受的输入数值范围不一样

3.3 特征归一化的方法

3.3.1 Rescaling

采用上述的

  1. x' = \frac{x - min(x)}{max(x) - min(x)}

公式实现。

在 sklearn中,对应的是 sklearn.preprocessing.MinMaxScaler,其使用方法如下:

  1. from sklearn.preprocessing import MinMaxScaler

  2. x=[[10001,2],[16020,4],[12008,6],[13131,8]]

  3. min_max_scaler = MinMaxScaler()

  4. X_train_minmax = min_max_scaler.fit_transform(x)#归一化后的结果

它默认将每种特征的值都归一化到[0,1]之间,归一化后的数值大小范围是可调的(根据 MinMaxScaler的参数 feature_range调整)。下面代码能将特征归一化到 [-1,1]之间。

  1. min_max_scaler = MinMaxScaler(feature_range=(-1,1))

  2. X_train_minmax = min_max_scaler.fit_transform(x)#归一化后的结果

3.3.2 Standardization

其数学公式为:

  1. x'=\frac{x-\overline{x}}{\sigma}

在 sklearn中对应的是 sklearn.preprocessing.StandardScaler。其代码如下:

  1. from sklearn.preprocessing import StandardScaler

  2. x=[[10001,2],[16020,4],[12008,6],[13131,8]]

  3. X_scaler = StandardScaler()

  4. X_train = X_scaler.fit_transform(x)

StandardScaler的归一化方式是用每个特征减去列均值,再除以列标准差。

==总结==:

  • 当我们需要将特征值都归一化为某个范围[a,b]时,选MinMaxScaler

  • 当我们需要归一化后的特征值均值为0,标准差为1,选StandardScaler

3.3.3 Scaling to unit length

其数学公式为:

  1. x'=\frac{x}{\left \| x \right \|}

参考文献

  • https://blog.csdn.net/sd9110110/article/details/53453945

作者介绍:邵洲,在读博士。研究兴趣:数据挖掘、学者迁徙研究。

(0)

相关推荐