圆锥曲线解题方法与常规题型(word分享)

总论:常用的八种方法

1、定义法

2、韦达定理法

3、设而不求点差法

4、弦长公式法

5、数形结合法

6、参数法(点参数、K参数、角参数)`

7、代入法中的顺序

8、充分利用曲线系方程法

七种常规题型

   (1)中点弦问题

   (2)焦点三角形问题

   (3)直线与圆锥曲线位置关系问题

   (4)圆锥曲线的有关最值(范围)问题

   (5)求曲线的方程问题

1.曲线的形状已知--------这类问题一般可用待定系数法解决。

2.曲线的形状未知-----求轨迹方程

   (6) 存在两点关于直线对称问题

   (7)两线段垂直问题

常用的八种方法

定义法(典型例题)

韦达定理法(典型例题)

点差法

1
以定点为中点的弦所在直线的方程
2
过定点的弦和平行弦的中点坐标和中点轨迹
3
求与中点弦有关的圆锥曲线的方程
4
圆锥曲线上两点关于某直线对称问题
5
求直线的斜率
6
确定参数的范围
7
证明定值问题
8
其它。看上去不是中点弦问题,但与之有关,也可应用。

弦长公式法

数形结合法

参数法

代入法中的顺序

充分利用曲线系方程

解析几何七种常规题型及方法

常规题型及解题的技巧方法

(0)

相关推荐