浅谈好奇心对数学史的影响

本文作者:北京市十一学校数学建模协会张健宸、宋敏正同学,[遇见] 授权转发并略有调整。

“记住,数学是一门感性驱动的学科。说数学是理性驱动的那叫应试,那不叫数学,能不能理解?”每次在课前,朱浩楠老师总是会反复强调着这一句话,“真正的数学是你发现了一个无法解决的问题,你对它感兴趣,要解决它,为此你可能要下新的定义或推新的公式,这才叫数学,数学也是就此发展的。”

好奇心是个体遇到新奇事物下所产生的注意、操作、提问的心理倾向,是个体学习的内在动机之一,是个体寻求知识的动力。

回顾数学史,一个又一个理论正是在那一位位数学家寻求新奇知识的过程中建立并拓展的。

01 无理数的诞生

公元前 500 年,伟大的数学家毕达哥拉斯认为世界上只存在整数和分数,除此之外就没有任何其他的数。但是很快,一个新奇的问题出现了:当一个正方形的边长是 1 的时候,对角线的长 m 等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费尽心思也不知道这个 究竟是什么数。世界上除了整数和分数以外还有没有别的数?

这个问题引起了学派成员希帕索斯(Hippasus)的兴趣,他花费了很多的时间去钻研,最终希帕索斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数。就这样,无理数的雏形出现在了历史的舞台。

Credit: Jeffrey Phillips

无理数的应用可不仅仅用于计算对角线的长度这么简单。如常见的无理数Π。Π是能精确计算圆的周长、面积,球的体积等几何形状的关键值。它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,正是通过运行 π 的计算而找到它的一点小问题。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。

02 三次方程的解

然而,就算有理数和无理数已经问世,还是无法解决一个问题 —— 代数方程的求解问题。像 x²+1=0 这样最简单的二次方程,就算代入所有的无理数和有理数,原方程还是没有解。

12 世纪的印度数学家婆什伽罗认为这个方程是没有解的。因为正数的平方一定是正数,负数的平方也一定是正数,因此,一个正数的平方根有一个正数和一个负数,而负数没有平方根,所以这个方程没有解。这等于不承认方程的负数平方根的存在。

1545 年意大利米兰的卡尔达诺发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式。形如: x³+ax+b=0 三次方程解如下:

03 卡尔达诺的遗憾

当卡尔达诺试图用该公式解方程 x³-15x-4=0 时他的解是:

在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡尔达诺的公式给出 x=(2+j)+(2-j)=4,易证。并把(-121)^(1/2) 数记为 1545R15-15m,这便是最早的虚数记号。但他认为这仅仅是个形式表示而已,并不关心 (-121)^1/2 的出现的原因,认为其只是“不可捉摸而无用的东西”,因而错失了对虚数进行进一步探索的大好机会。

结果直到 19 世纪初,高斯系统地使用了 i 这个符号,并主张用数对(a、b)来表示 a+bi,称为复数,并推广了复平面的概念——在直角坐标系里,点 z 的横坐标是 a,纵坐标是 b,复数 z=a+bi 可用点 Z(a,b)来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴除去原点的部分称为虚轴。这给予其几何意义,使复数有了立足之地,虚数才逐步得以通行,建立了复变函数(以复数作为自变量和因变量的函数)的广泛理论。

▲ 与其共轭 在复平面中的几何表示。从原点到点 z 的箭头是 z 的模长或绝对值。角 是 z 的辐角

如果错失了虚数,这对于数学史的发展影响巨大。第一个层面是对于数学本身的影响。如果不引入虚数的概念后,数学就会仍存在一些逻辑上可能的漏洞。

比如说,在实数的范围内,x²+1=0 是无解的,这样一来,有的多项式方程有解,有的无解,数学就不完美了。引入一个虚拟的概念,虚数 i,就让所有的方程都变得有解了。更完美的是,引入虚数的概念后,所有的一元 n 次方程都会有 n 个解,没有例外。

第二个层面是影响数学复杂问题的解法。虚数作为数学工具最大的用途可能是便于将直角坐标变成极坐标。极坐标是指在平面内取一个定点 O,叫极点,引一条射线 Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点 M,用 ρ 表示线段 OM 的长度,θ 表示从 Ox 到 OM 的角度,ρ 叫做点 M 的极径,θ 叫做点 M 的极角,有序数对 (ρ,θ)就叫点 M 的极坐标,这样建立的坐标系叫做极坐标系。

▲ 极坐标下 r=|sinkθ| 图像

一般来讲,在飞行、航海等场景里,极坐标更方便使用。比如我们说往两点钟的方向飞行 20 公里,这就是极坐标的描述方式。在极坐标的计算中,如果只用实数,非常复杂,如果引入虚数,就极为简单。

结语

所以,总览数学的发展历程,对科学规律的“感性驱动”对于科学的基础研究是必不可缺的。因此,时常对科学研究与发现保持一颗热枕的心,无论对于埋头研究的科学家,或是寒窗苦读的我们都能在对科学的学习探索中学有所成。

更多【Mathburger】文章请见十一学校建模协会账号。

(0)

相关推荐

  • 为什么要有一个数的平方等于-1?

    历史表明,人类接受一种新数的过程是漫长而坎坷的. 正数.负数.有理数.无理数 在欧洲,负数的概念迟至12世纪末,才由意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci,约1170-约 ...

  • 数系的扩充(数学史).pptx

    数系的扩充(数学史) 自然数(正整数与零) 整数 有理数 实数 唯物辨证法认为,事物是发展变化的,事物内部的矛盾运动是推动事物向前发展的根本动力.由于实数的局限性,导致某些数学问题出现矛盾的结果,数学 ...

  • 虚数i真的存在吗?

    不知大家是否还记得高中的时候我们学过的一个重要数学概念--虚数,其定义是这样的: 然后形如: 这样的数就称为复数.可能有的同学对此完全没印象,或者只是感到似曾相识,它认识你,你不认识它,如果正在看这篇 ...

  • 复数的产生

    形如 的形式在数学中被定义为复数,其中 为虚数单位, . 为任意实数. 要说复数的产生,先从数的演变史开始说起. 最初,人们从自然界中启发,得到了数字1.2.3--,当然还有0,这就是自然数,来源人们 ...

  • 什么是虚数:它在我们日常生活中扮演着什么角色?

    文艺复兴时期的数学家首先提出了虚数的概念. 在丹·布朗(Dan Brown)2003年的超级畅销悬疑惊悚小说<达芬奇密码>中,书中的主人公罗伯特·兰登(Robert Langdon)和密码 ...

  • 浅谈陈洪绶对日本浮世绘的影响

    陈洪绶(1598-1652),字章侯,号老莲,晚年又名悔迟.老迟等,浙江诸暨人,明末清初画家.陈洪绶一生创作了大量绘画作品,人物画与仕女画尤其值得关注,其人物风格"高古奇骇,俱非耳目近玩&q ...

  • 崔银松:浅谈如何运用数学课堂培养高中生的逻辑推理能力

    发<中国教师> 21年4月刊 浅谈如何运用数学课堂培养高中生的逻辑推理能力-----胡阳新推荐 湖北省利川市第五中学    崔银松     邮编:445400 摘要:在新课程改革背景下,高 ...

  • 浅谈中医“瘟疫抗击史”,古代人是如何对抗瘟疫的?

    新冠病毒的侵袭,令中医药有了用武之地.从中医角度来讲,新冠病毒.SARS.甲流.埃博拉等均属于瘟疫.瘟疫是指感受疫疠之气而造成的大流行急性烈性传染病.关于瘟疫,我国早有记载,最早可见<素问·本病 ...

  • 浅谈高一学生数学崩盘的原因以及解决方法

    原创数学高考捕手2021-03-15 14:08:15 为什么不少初中孩子成绩考个接近满分,上高一就只有50多分,60多分,还是150 的满分. 高中数学学习崩盘,最大的原因是,高中以下的年龄,你只有 ...

  • 浅谈枭神对命运的影响

    在八字命理中,生我者为印星,异性为正印,同性为偏印或枭神.许多人把偏印和枭神混为一谈,这里要跟大家讲明白,偏印是好的,这种人多热爱学习,能有高智慧以后是不错的命,偏印在人物中代表后妈,这个后妈却比亲生 ...

  • 【乾訸书苑】浅谈居住环境对个人成长的影响

    墨风老师聊国学,喜欢这些内容的朋友,欢迎关注.留言.点赞.转发,谢谢!

  • 恋爱遭遇“李莫愁”,爱情差点被毁,浅谈夫妻感情对子女的影响

    还记得电视连续剧<神雕侠侣>的开场吗?李莫愁伤感地念着: 问世间,情为何物,直教人生死相许?-- 如果第一次看这部剧,我们大概会认为李莫愁是一个痴情女子,可是,画面一转,她由痴情女子变成了 ...

  • 浅谈个人学习数学的方法

    为什么有的孩子明明很努力了,但是成绩总是上不去呢?每次课上都认真听,并且感觉都会了,但是回家做作业又不会了.做错的题老师讲解后感觉听懂了,但是遇到相同的题目还是有可能做不出来.出现这种现象有可能是努力 ...

  • 浅谈香料在钓鱼中的影响,有的纯属骗人,鱼喜欢才是正解

    可以说现在市面上的商品饵料没有一个不"香"的,而且各家的香味还略有不同,有的注重于薯香.有的注重奶香.有的注重腥香--.不管什么香味,反正至少我们人闻起来就特别舒服,恨不得自己吃一 ...