大学教授谈新高考中的选择题高分策略

罗增儒教授是我国数学奥林匹克首批高级教练.多年来从事数学教学论、数学竞赛论、数学解题论的教学与研究,并对高考命题和解题有着深入的研究。

在2021年多个省市加入到新高考队伍之后,新高考中出现的新题型,新考法一直是各地教师和考生非常关注的问题。

高考命题多年来一直强调“稳中求变,稳中求新”。新高考数学卷的一个新情况是推出“多项选择题”和“多空填空题”,并立即引起教师和考生的的关注。

罗教授针对大家普遍关心的一些问题,尤其是选择题的出题精神和解题策略,都做了大量分析。

01数学选择题的渊源变化‍

1950年, 当时的高考还不是全国统一招生,华北高考数学首次出现出现了 5道选择题,后来一度消失。

20世纪80年代,由于考试出题标准化,从1983年起高考数学又出现了选择题,至今已发展成为一类稳定的题型。过往的考试中,高考数学选择题基本上是“单项选择题”(一对三错,四选一),它的一个明显不足是不懂数学的人也有四分之一猜对(该题得满分)的概率,这就不能准确反映被试者的真实水平了。

在最近几年新课程、新高考的背景下。“多项选择题”闪亮登场,数学解题研究迎来了新的机遇和挑战。

02如何看待数学选择题‍

(1)选择题的考查功能

选择题具有“回答方便、评分客观、利于机器阅卷”等优势,故而承载着全面考查基础知识的功能。主要用来检查学生是否理解基础知识?是否熟练掌握基本技,是否能准确做到基本运算?是否掌握基本方法?考虑问题严谨不严谨?在有限时间内答题,选择题还有考查解题速度的功能。要求学生求解“熟、准、快”,即内容熟识、概念准确、推演快速,既考记忆也考理解,既考演算也考论证。

(2)选择题的题型特点

选择题具有“单、多、广、活”的特征,即内容比较单一(大多只涉及1~3个知识点、仅进行1~3步运算),数量比较多,覆盖面比较广,题型比较活泼。

根据考查内容的不同,选择题通常分为“定量计算型”和“定性论证型”两种。定量计算型题目的选项就是演算的最后结果,定性论证型选择题的选项是推理的必然结论。由于定量计算型选择题的命制较为容易。所以试卷中定量计算型会多一些。

(3) 误导项的设置原理

选择题的四个选择项,有正确项也有诱导项。设置无导向的主要手段是:估计混淆某个重要概念;故意算错关键步骤;忽略隐含条件;忽略数形关系;在逻辑上以偏概全等。

03选择题答题策略

(1)两类选择题的结构对比(见表1)

由以上结构对比可以看到:

①无论是单选题还是多选题,都是在给定条件,并且题目提供了可能的选项,要求考生找出正确选项。这就为解题提供了便利,不需要考生提供详细严谨的解题过程,尽可能小题小做,小题巧做,避免小题大做。

②多选题与单选题主要有两点不同:一是增加了正确选项,二是“见错归零”。2020年高考数学山东卷将这两点表述为“在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得零分,部分选对的得3分”。2021年的八省联考又改成全对得5分,部分选对得2分,减小投机。这样一来,既提高了单凭“猜测”得满分的困难度,又增加了得满分的思维量。

在实际命题中,为了体现与单项选择题的区别,多项选择题大多采用2个及以上的“正确项”。此外,也不会设置4个选项都是正确项,否则考生随便选一项就能得到2分或者3分。因此多选题的选项就是2项或者3项。

在这样的背景下,一些基础不好的考生,也可以采用相对安全的方式得分,那就是“大胆选一项,慎重选多项”。基础好的同学,想得满分最多不要超过3项,也不要少于2项。

(2)两类选择题的解法对比

①单项选择题的求解

单选题只有一个正确选项。所以可以制定多个策略:

策略1:肯定一个选项(选择支)

策略2:都顶三个选项(选择支)

策略3:逻辑分析法

策略4:合情推理法

策略5:结论也是已知信息

根据这些求解策略,又可以得到“求解对照法”、“逆推代人法”“特值检验法”、“逻辑分析法”、“特征分析法”(各有肯定和否定两种形式)等个性解法,形成解答选择题的一个方法体系(见图1).

把这个体系加以整理,就得到各有肯定形式与否定形式的12 个解法。如表2所示。

在这里要说明的是,应该认识到“求解对照法”是通用的方法。当其他方法行不通的时候,求解对照往往能成功;但在使用求解对照法前,又应先考虑其他方法能否奏效,尽量避免“小题大做”。同时,还应注意多种方法的灵活使用。

②从上面不难发现,多选题和单选题的策略类似。主要的区别是把“有且只有一项正确”改为“至少有一项正确”,并增加了“见错归零”。

由于多选题有多个选项,所以又产生了3个独特的情况:

第一种,两个选项相互等价。在单项选择题中,若选项“A等价于B”,则A。B均假,否则A,B均真,与“4个选项中有且只有一项正确”矛盾(逻辑分析法)。但在多项选择题中,选择支A,B可以同真或同假。

第二种,两个选项并列,都是题干的必要条件,相互之间没有等价关系。在单选题中,选项中“若A则B”,A必错;否则A,B均正确,与“4个选项中有且只有一项正确”矛盾(逻辑分析法)。但在多项选择题中,选项A、B可以同真或同假。

第三种,混合型选择项。这是上述两种类型的综合,就是正确项之间既有充要条件又有必要条件,这时,肯定会有三个正确项,选一项得3分的机会很大。

高考数学中的选择题无论是单选题还是多选题,抛开具体知识,单从技术层面来看,两者既有一定的相同点,也各有特色。所以熟练掌握解题的原理,对得分有很大的好处。

(0)

相关推荐