C语言实现面向对象的原理

不知道有多少人去了解过语言的发展史,早期C语言的语法功能其实比较简单。随着应用需求和场景的变化,C语言的语法功能在不断升级变化。

虽然我们的教材有这么一个结论:C语言是面向过程的语言,C++是面向对象的编程语言,但面向对象的概念是在C语言阶段就有了,而且应用到了很多地方,比如某些操作系统内核、通信协议等。

面向对象编程,也就是大家说的OOP(Object Oriented Programming)并不是一种特定的语言或者工具,它只是一种设计方法、设计思想,它表现出来的三个最基本的特性就是封装、继承与多态

为什么要用C语言实现面向对象

阅读文本之前肯定有读者会问这样的问题:我们有C++面向对象的语言,为什么还要用C语言实现面向对象呢?

C语言这种非面向对象的语言,同样也可以使用面向对象的思路来编写程序的。只是用面向对象的C++语言来实现面向对象编程会更简单一些,但是C语言的高效性是其他面向对象编程语言无法比拟的。

当然使用C语言来实现面向对象的开发相对不容易理解,这就是为什么大多数人学过C语言却看不懂Linux内核源码。

所以这个问题其实很好理解,只要有一定C语言编程经验的读者都应该能明白:面向过程的C语言和面向对象的C++语言相比,代码运行效率、代码量都有很大差异。在性能不是很好、资源不是很多的MCU中使用C语言面向对象编程就显得尤为重要。

具备条件

要想使用C语言实现面向对象,首先需要具备一些基础知识。比如:(C语言中的)结构体、函数、指针,以及函数指针等,(C++中的)基类、派生、多态、继承等。

首先,不仅仅是了解这些基础知识,而是有一定的编程经验,因为上面说了“面向对象是一种设计方法、设计思想”,如果只是停留在字面意思的理解,没有这种设计思想肯定不行。

因此,不建议初学者使用C语言实现面向对象,特别是在真正项目中。建议把基本功练好,再使用。

利用C语言实现面向对象的方法很多,下面就来描述最基本的封装、继承和多态。

封装

封装就是把数据和函数打包到一个类里面,其实大部分C语言编程者都已近接触过了。

C 标准库中的 fopen(), fclose(), fread(), fwrite()等函数的操作对象就是 FILE。数据内容就是 FILE,数据的读写操作就是 fread()、fwrite(),fopen() 类比于构造函数,fclose() 就是析构函数。

这个看起来似乎很好理解,那下面我们实现一下基本的封装特性。

#ifndef SHAPE_H#define SHAPE_H
#include <stdint.h>
// Shape 的属性typedef struct {int16_t x; int16_t y; } Shape;
// Shape 的操作函数,接口函数void Shape_ctor(Shape * const me, int16_t x, int16_t y);void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);int16_t Shape_getX(Shape const * const me);int16_t Shape_getY(Shape const * const me);
#endif /* SHAPE_H */
这是 Shape 类的声明,非常简单,很好理解。一般会把声明放到头文件里面 “Shape.h”。来看下 Shape 类相关的定义,当然是在 “Shape.c” 里面。
#include 'shape.h'// 构造函数void Shape_ctor(Shape * const me, int16_t x, int16_t y){    me->x = x;    me->y = y;}void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy){    me->x += dx;    me->y += dy;}// 获取属性值函数int16_t Shape_getX(Shape const * const me) {return me->x;}int16_t Shape_getY(Shape const * const me) {return me->y;}
再看下 main.c
#include 'shape.h' /* Shape class interface */#include <stdio.h> /* for printf() */
int main() { Shape s1, s2; /* multiple instances of Shape */
Shape_ctor(&s1, 0, 1); Shape_ctor(&s2, -1, 2);
printf('Shape s1(x=%d,y=%d)\n', Shape_getX(&s1), Shape_getY(&s1));printf('Shape s2(x=%d,y=%d)\n', Shape_getX(&s2), Shape_getY(&s2));
Shape_moveBy(&s1, 2, -4); Shape_moveBy(&s2, 1, -2);
printf('Shape s1(x=%d,y=%d)\n', Shape_getX(&s1), Shape_getY(&s1));printf('Shape s2(x=%d,y=%d)\n', Shape_getX(&s2), Shape_getY(&s2));
return 0;}
编译之后,看看执行结果:
Shape s1(x=0,y=1)Shape s2(x=-1,y=2)Shape s1(x=2,y=-3)Shape s2(x=0,y=0)

整个例子,非常简单,非常好理解。以后写代码时候,要多去想想标准库的文件IO操作,这样也有意识的去培养面向对象编程的思维。

继承

继承就是基于现有的一个类去定义一个新类,这样有助于重用代码,更好的组织代码。在 C 语言里面,去实现单继承也非常简单,只要把基类放到继承类的第一个数据成员的位置就行了。

例如,我们现在要创建一个 Rectangle 类,我们只要继承 Shape 类已经存在的属性和操作,再添加不同于 Shape 的属性和操作到 Rectangle 中。

下面是 Rectangle 的声明与定义:

#ifndef RECT_H#define RECT_H
#include 'shape.h' // 基类接口
// 矩形的属性typedef struct { Shape super; // 继承 Shape
// 自己的属性uint16_t width;uint16_t height;} Rectangle;
// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,uint16_t width, uint16_t height);
#endif /* RECT_H */
#include 'rect.h'// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,uint16_t width, uint16_t height){/* first call superclass’ ctor */    Shape_ctor(&me->super, x, y);/* next, you initialize the attributes added by this subclass... */    me->width = width;    me->height = height;}

我们来看一下 Rectangle 的继承关系和内存布局:

因为有这样的内存布局,所以你可以很安全的传一个指向 Rectangle 对象的指针到一个期望传入 Shape 对象的指针的函数中,就是一个函数的参数是 “Shape *”,你可以传入 “Rectangle *”,并且这是非常安全的。这样的话,基类的所有属性和方法都可以被继承类继承!

#include 'rect.h' #include <stdio.h>
int main() { Rectangle r1, r2;
// 实例化对象 Rectangle_ctor(&r1, 0, 2, 10, 15); Rectangle_ctor(&r2, -1, 3, 5, 8);
printf('Rect r1(x=%d,y=%d,width=%d,height=%d)\n', Shape_getX(&r1.super), Shape_getY(&r1.super), r1.width, r1.height);printf('Rect r2(x=%d,y=%d,width=%d,height=%d)\n', Shape_getX(&r2.super), Shape_getY(&r2.super), r2.width, r2.height);
// 注意,这里有两种方式,一是强转类型,二是直接使用成员地址 Shape_moveBy((Shape *)&r1, -2, 3); Shape_moveBy(&r2.super, 2, -1);
printf('Rect r1(x=%d,y=%d,width=%d,height=%d)\n', Shape_getX(&r1.super), Shape_getY(&r1.super), r1.width, r1.height);printf('Rect r2(x=%d,y=%d,width=%d,height=%d)\n', Shape_getX(&r2.super), Shape_getY(&r2.super), r2.width, r2.height);
return 0;}

输出结果:

Rect r1(x=0,y=2,width=10,height=15)Rect r2(x=-1,y=3,width=5,height=8)Rect r1(x=-2,y=5,width=10,height=15)Rect r2(x=1,y=2,width=5,height=8)
多态
C++ 语言实现多态就是使用虚函数。在 C 语言里面,也可以实现多态。
现在,我们又要增加一个圆形,并且在 Shape 要扩展功能,我们要增加 area() 和 draw() 函数。但是 Shape 相当于抽象类,不知道怎么去计算自己的面积,更不知道怎么去画出来自己。而且,矩形和圆形的面积计算方式和几何图像也是不一样的。
下面让我们重新声明一下 Shape 类:
#ifndef SHAPE_H#define SHAPE_H
#include <stdint.h>
struct ShapeVtbl;// Shape 的属性typedef struct {struct ShapeVtbl const *vptr;int16_t x; int16_t y; } Shape;
// Shape 的虚表struct ShapeVtbl {uint32_t (*area)(Shape const * const me);void (*draw)(Shape const * const me);};
// Shape 的操作函数,接口函数void Shape_ctor(Shape * const me, int16_t x, int16_t y);void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);int16_t Shape_getX(Shape const * const me);int16_t Shape_getY(Shape const * const me);
static inline uint32_t Shape_area(Shape const * const me){return (*me->vptr->area)(me);}
static inline void Shape_draw(Shape const * const me){ (*me->vptr->draw)(me);}

Shape const *largestShape(Shape const *shapes[], uint32_t nShapes);void drawAllShapes(Shape const *shapes[], uint32_t nShapes);
#endif /* SHAPE_H */

看下加上虚函数之后的类关系图:

5.1 虚表和虚指针
虚表(Virtual Table)是这个类所有虚函数的函数指针的集合。
虚指针(Virtual Pointer)是一个指向虚表的指针。这个虚指针必须存在于每个对象实例中,会被所有子类继承。
在《Inside The C++ Object Model》的第一章内容中,有这些介绍。
5.2 在构造函数中设置vptr
在每一个对象实例中,vptr 必须被初始化指向其 vtbl。最好的初始化位置就是在类的构造函数中。事实上,在构造函数中,C++ 编译器隐式的创建了一个初始化的vptr。在 C 语言里面, 我们必须显示的初始化vptr。
下面就展示一下,在 Shape 的构造函数里面,如何去初始化这个 vptr。
#include 'shape.h'#include <assert.h>// Shape 的虚函数static uint32_t Shape_area_(Shape const * const me);static void Shape_draw_(Shape const * const me);// 构造函数void Shape_ctor(Shape * const me, int16_t x, int16_t y){// Shape 类的虚表static struct ShapeVtbl const vtbl =     {       &Shape_area_,       &Shape_draw_    };    me->vptr = &vtbl;     me->x = x;    me->y = y;}void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy){    me->x += dx;    me->y += dy;}int16_t Shape_getX(Shape const * const me) {return me->x;}int16_t Shape_getY(Shape const * const me) {return me->y;}// Shape 类的虚函数实现static uint32_t Shape_area_(Shape const * const me){    assert(0); // 类似纯虚函数return 0U; // 避免警告}static void Shape_draw_(Shape const * const me){    assert(0); // 纯虚函数不能被调用}Shape const *largestShape(Shape const *shapes[], uint32_t nShapes){    Shape const *s = (Shape *)0;uint32_t max = 0U;uint32_t i;for (i = 0U; i < nShapes; ++i)     {uint32_t area = Shape_area(shapes[i]);// 虚函数调用if (area > max)         {            max = area;            s = shapes[i];        }    }return s;}void drawAllShapes(Shape const *shapes[], uint32_t nShapes){uint32_t i;for (i = 0U; i < nShapes; ++i)     {        Shape_draw(shapes[i]); // 虚函数调用    }}
5.3 继承 vtbl 和 重载 vptr
上面已经提到过,基类包含 vptr,子类会自动继承。但是,vptr 需要被子类的虚表重新赋值。并且,这也必须发生在子类的构造函数中。下面是 Rectangle 的构造函数。
#include 'rect.h'#include <stdio.h>
// Rectangle 虚函数static uint32_t Rectangle_area_(Shape const * const me);static void Rectangle_draw_(Shape const * const me);
// 构造函数void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,uint16_t width, uint16_t height){static struct ShapeVtbl const vtbl = { &Rectangle_area_, &Rectangle_draw_ }; Shape_ctor(&me->super, x, y); // 调用基类的构造函数 me->super.vptr = &vtbl; // 重载 vptr me->width = width; me->height = height;}
// Rectangle's 虚函数实现static uint32_t Rectangle_area_(Shape const * const me){ Rectangle const * const me_ = (Rectangle const *)me; //显示的转换return (uint32_t)me_->width * (uint32_t)me_->height;}
static void Rectangle_draw_(Shape const * const me){ Rectangle const * const me_ = (Rectangle const *)me; //显示的转换printf('Rectangle_draw_(x=%d,y=%d,width=%d,height=%d)\n', Shape_getX(me), Shape_getY(me), me_->width, me_->height);}
5.4 虚函数调用
有了前面虚表(Virtual Tables)和虚指针(Virtual Pointers)的基础实现,虚拟调用(后期绑定)就可以用下面代码实现了。
uint32_t Shape_area(Shape const * const me){return (*me->vptr->area)(me);}
这个函数可以放到.c文件里面,但是会带来一个缺点就是每个虚拟调用都有额外的调用开销。为了避免这个缺点,如果编译器支持内联函数(C99)。我们可以把定义放到头文件里面,类似下面:
static inline uint32_t Shape_area(Shape const * const me){return (*me->vptr->area)(me);}
如果是老一点的编译器(C89),我们可以用宏函数来实现,类似下面这样:
#define Shape_area(me_) ((*(me_)->vptr->area)((me_)))
看一下例子中的调用机制:
5.5 main.c
#include 'rect.h'#include 'circle.h'#include <stdio.h>
int main(){ Rectangle r1, r2; Circle c1, c2; Shape const *shapes[] = { &c1.super, &r2.super, &c2.super, &r1.super }; Shape const *s;
// 实例化矩形对象 Rectangle_ctor(&r1, 0, 2, 10, 15); Rectangle_ctor(&r2, -1, 3, 5, 8);
// 实例化圆形对象 Circle_ctor(&c1, 1, -2, 12); Circle_ctor(&c2, 1, -3, 6);
s = largestShape(shapes, sizeof(shapes)/sizeof(shapes[0]));printf('largetsShape s(x=%d,y=%d)\n', Shape_getX(s), Shape_getY(s));
drawAllShapes(shapes, sizeof(shapes)/sizeof(shapes[0]));
return 0;}
输出结果:
largetsShape s(x=1,y=-2)Circle_draw_(x=1,y=-2,rad=12)Rectangle_draw_(x=-1,y=3,width=5,height=8)Circle_draw_(x=1,y=-3,rad=6)Rectangle_draw_(x=0,y=2,width=10,height=15)
总结
还是那句话,面向对象编程是一种方法,并不局限于某一种编程语言。用 C 语言实现封装、单继承,理解和实现起来比较简单,多态反而会稍微复杂一点,如果打算广泛的使用多态,还是推荐转到 C++ 语言上,毕竟这层复杂性被这个语言给封装了,你只需要简单的使用就行了。但并不代表,C 语言实现不了多态这个特性。

参考素材:

https://blog.csdn.net/onlyshi/article/details/81672279

(0)

相关推荐

  • Opencv中rectangle函数与Rect函数的用法

    rectangle函数是用来绘制一个矩形框的,通常用在图片的标记上. 1.rectangle(img2, Point(j,i), Point(j + img4.cols, i + img4.rows) ...

  • 嵌入式状态机编程

    状态机基本术语 现态:是指当前所处的状态. 条件:又称为"事件",当一个条件被满足,将会触发一个动作,或者执行一次状态的迁移. 动作:条件满足后执行的动作.动作执行完毕后,可以迁移 ...

  • 一步步分析-C语言如何面向对象编程

    这是道哥的第009篇原创 一.前言 在嵌入式开发中,C/C++语言是使用最普及的,在C++11版本之前,它们的语法是比较相似的,只不过C++提供了面向对象的编程方式. 虽然C++语言是从C语言发展而来 ...

  • C语言实现环形队列的原理和方法

    什么是环形队列? 环形缓冲区是一个非常典型的数据结构,这种数据结构符合生产者,消费者模型,可以理解它是一个水坑,生产者不断的往里面灌水,消费者就不断的从里面取出水. 那就可能会有人问,既然需要灌水,又 ...

  • 不谈高级原理,只用简单的语言来聊聊机器学习

    本文转载自公众号Datawhale译者:Ahong,来源:dataxon机器学习人人都在谈论,但除了老师们知根知底外,只有很少的人能说清楚怎么回事.如果阅读网上关于机器学习的文章,你很可能会遇到两种情 ...

  • C语言编译原理

    https://m.toutiao.com/is/Jo689AQ/ 源码编译工具gcc 为什么使用gcc GCC介绍 GCC手册 AliOS Things物联网操作系统\day03\02-参考资料\L ...

  • KUKA机器人的编程及开发的语言原理

    一.KUKA机器人的语言 KUKA的机器人编程语言简称 KRL,是一种类似C语言的文本型语言,由.SRC 和 .DAT 组成.如果有使用ABB机器人等其他类似高级语言经验的话,非常容易上手.但是由于其 ...

  • Java语言原理

    Java语言及规则:开源.通用: Java语言中转:安装虚拟JVM: 在计算机运行:

  • 写诗的原理十(怎样认识三种表达方式的语言特色)

    十.怎样认识三种方式的语言特色 就写诗这一艺术形式整体而言,很大程度上的审美是在语言特色方面,这不可回避,也无法否认.也因此,这一艺术形式往往就被定义为了"语言艺术".也是这个原因 ...

  • ​【教学案例】运用渐隐原理对智障儿童 进行语言训练的实施案例

    [教学案例]运用渐隐原理对智障儿童 进行语言训练的实施案例 杨飞 云南省昌宁县特殊教育学校 [注:渐隐是指个体逐渐变化某项能引起特定反应的刺激,而令个体对于部分变动,或有重大变动的刺激,仍可保持与原来 ...