我们现在只关心一个东西有多少个洞。所以在我们现在讨论的体系里,不仅所有的三角形是“相同”的,而且三角形和正方形、圆形也是“相同”的:他们都属于只有一个洞的形状。相比之下,数字8 则属于完全不同的另一种形状,因为它有两个洞。思考这个问题的一种方法是想象所有东西都是用橡皮泥做的:想象一下你能否将一个形状捏成另一个形状,同时保证不制造出新的洞,也不需要将其他的形状粘在它上面。问题:字母表里的哪些大写字母在这个形状可塑的情境下是“相同”的?· 没有洞的字母:C E F G H I J K L M N S T U V W XY Z。· 有一个洞的字母:A D O P Q R。· 唯一一个有两个洞的字母:B。这说明,从拓扑学的角度讲,大部分字母都是一样的。这也正是电脑很难识别手写字母的原因之一。我们也可以尝试在更高的维度讨论这个问题。想象一下我们用一团橡皮泥做出一个甜甜圈。我们有两种制作方法:你可以先捏出一个香肠的形状,然后把它的头尾相连,也可以在揉成一团的橡皮泥中间戳一个洞。不管使用哪种方法,你的做法都证明了从拓扑学的角度来看,甜甜圈和一团橡皮泥是不同的。而当你做好了甜甜圈以后,你不必戳新的洞也不必粘上另一块橡皮泥就可以用它做出一个咖啡杯。甜甜圈的洞可以被视为咖啡杯把手与杯身之间的那个洞,你只需要把实心的部分捏出凹面做成杯肚的形状,咖啡杯就做成了。也就是说:从拓扑学的角度讲,甜甜圈和咖啡杯是一样的。而与此相对, “两个洞的甜甜圈”则与一个洞的甜甜圈或者咖啡杯完全不同。关于事物在拓扑学上的异同这个问题有很多应用。比如,之前我们讨论过关于绳结的数学,而绳结是拓扑学研究的一类对象。在借助拓扑学研究绳结的过程中,一个很奇妙的思考方式就是,你并不是在空白的纸上用彩色画笔画画,而是先用彩色画笔涂满一整张纸,然后擦掉你想擦的部分,以此完成一张主体部分为白色而背景为彩色的画。现在,让我们想象一下在三维空间里进行这样的创作。想象一下你拿着一支“可以在空中画画的彩色笔”,你将一个盒子的内部空间填满了颜色。然后,你又拿出一个“可以在空中使用的橡皮擦”,用它在你刚才填色的部分擦出一个绳结的形状。现在,整个空间剩下的彩色部分就是一个几乎无法想象,却很容易用数学方法进行研究的形状。我们刚才描述的那种在三维空间里去掉某物的过程叫作取“补集”。一旦我们完成了这个过程,我们就可以像捏橡皮泥一样任意改变剩下那部分的形状,前提是不增加洞的数量或者粘上另一块橡皮泥。你能想象出下面这些形状的补集吗?· 一个圆圈○在拓扑学上的补集与一个空心的、内部中央只撑了一根短棍的球面相同: