与二次函数有关的最优化问题

与二次函数有关的最优化问题在人们的生产、生活中有着广泛的应用,为帮助同学们进一步掌握这类问题的求解策略,下面给出两例与之有关的试题,供大家参考.

1某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

 分析:这是一道与商品销售有关的最优化问题.首先根据“利润=(售价-进价)×销售量”构建二次函数,然后通过配方或用顶点坐标公式求出最值.

(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式,并写出自变量的取值范围.

(2)当x是多少时,种植菊花的面积最大?最大面积是多少?

分析:这是花草种植面积的最优化问题,先根据矩形的面积公式列出y与x之间的函数关系式,再利用配方法或公式法求得最大值.

点评:求解与二次函数有关的最优化问题时,首先要根据题意构建函数关系式,然后再利用配方法或公式法求得最大值.有一点大家一定要注意:顶点横坐标在自变量的取值范围内时,二次函数在顶点处取得最值;顶点横坐标不在自变量的取值范围内时,要根据题目条件,具体分析,才能求出符合题意的最值.

(0)

相关推荐