第一作者:Jian Tan通讯作者:叶明新、沈剑锋通讯单位:复旦大学锂离子电池(LIBs)自1991年进入市场以来就占据了至关重要的地位,其商业化极大地推动了无化石燃料可持续发展社会的目标,彻底改变了人们的日常生活。近几十年来,对高密度储能系统的需求呈指数级增长。尽管LIBs拥有巨大的商业市场,但基于石墨负极(理论比容量为372 mAh g-1)和过渡金属氧化物正极的电池不能满足当前移动社会对能量密度的要求。因此,迫切需要探索先进的高性能储能系统。近年来,硅(Si)已成为下一代可充电LIBs最有希望的阳极材料之一,因其放电电势较低,理论容量高(4200 mAh g-1),地壳中储量丰富,振实密度相对较高。但其实际应用受到锂化/脱锂过程中大体积膨胀(高达400%)的阻碍,这可能会导致SEI的严重机械问题(如破裂)及其与电解液的副反应,从而导致差的循环稳定性和容量的衰减。因此,在Si阳极表面构建稳定SEI保护膜对于提高电池的日历寿命非常重要。在过去的几十年中,学术界投入大量精力来研究盐、溶剂和添加剂在SEI膜的形成和演化过程中的作用。但关于SEI的结构和化学成分仍未完全阐明。对于SEI的不同组分是如何在阳极/电解液界面形成,以及Li+如何在SEI中传输的了解仍然有限。几个研究小组报道了SEI中存在多种不同化合物。然而,其复杂性的根本原因仍难以捉摸。许多文献报道了SEI的保护作用是源于其无机层,并进一步声称LiF起关键作用。然而也有一些研究明确指出,LiF以二次粒子的形式沉积,不存在于连续致密的SEI层中,即它不能保护电解液免于分解。目前关于LiF在SEI中作用的综合比较很少,因此本综述旨在提供对SEI以及LiF在SEI中作用的全面概述,总体框架如图1所示。
图5 石墨表面SEI。a) LIBs中石墨阳极充电过程示意图。b)锂化石墨表面均匀SEI的示意图。c)锂化石墨表面不均匀SEI的示意图。d)单层、双层和多层锂化石墨烯的模拟。d)石墨表面初始SEI形成的示意图2.2.2 Si阳极表面SEISi(1s22s22p63s23p2)和石墨(1s22s22p6)具有不同的电子与材料结构,因而Si阳极表面形成SEI的机理与石墨不同。通常,Si表面存在一层天然氧化物膜(SiOx)。据报道,在首次充电过程中,具有硅烷醇官能团的氧化硅层可与有机溶剂、锂盐、有机添加剂或杂质反应。显然,硅阳极SEI的结构和化学成分与石墨阳极不同。为检测Si阳极表面SEI的化学成分,需使用一些先进表征技术,如XPS ,二次离子质谱(SIMS),俄歇电子能谱(AES),以及X射线和中子反射仪(XRNR)。基于这些表征技术,可检测到LixSiOy、Li2O、LiF、Li2CO3等多种组分。如Cui课题组基于低温电子显微镜,报道了在含LiPF6的不同电解液中(EC和FEC用作溶剂),Si阳极表面SEI的动态结构和化学成分(图6a);基于其表征结果证实了LEDC和Li2O可防止电解液进一步分解,认为是SEI的关键成分。此外,Toney等利用原位同步X射线反射(XRR)探测了晶体Si在1 m LiPF6-EC/DMC电解液中的实时锂化/去锂化过程。基于研究结果,作者提出了含天然氧化膜的Si阳极表面SEI生长的可能机制(图6b)。Wang等人最近报道了针对LIBs中Si基阳极的通用电解液设计策略。作者证明,2 m LiPF6-THF/MTHF电解液中Si表面可形成均匀的薄LiF基SEI(图6c)。此外,Stetson等人对有无氧化膜时Si阳极表面的SEI提出了新见解。经HF蚀刻SiO2后的Si阳极,电化学反应形成的SEI呈现出倒置的双层结构,即富有机组分SEI靠近Si阳极,无机组分SEI位于外层,这与表面存在氧化物膜时Si阳极表面SEI有很大的不同(图6d)。
图7 Li金属表面SEI的形成示意图3. SEI的表征技术如前所述,SEI层具有电子绝缘和离子电导的特点,是由电解液和Li金属的反应形成。为表征SEI膜的初始状态,研究者们致力于探索先进的原位表征技术,如原位TEM,深度XPS,cryo-EM等。当使用这些表征技术时需注意其适用范围。从理论上讲,基于TEM的工作机理可知似乎不能通过其获得SEI层的原始形态、化学成分和分布。这是因为高能电子束在很大程度上会损害SEI样品。因此不宜采用标准TEM来表征Li金属表面形成的SEI。XPS依靠光子束撞击SEI膜样品以获得相关的化学信息,被认为是SEI层的标准表征手段。但SEI膜通常呈现3D结构,这需要具有相对较高分辨率的表征技术。因此,仅通过XPS来实现SEI空间结构的表征具有挑战性。因锂金属表面的SEI可在极低温度下保持其初始结构和化学成分,故可通过具有原子分辨率的冷冻电镜(cryo-EM)直接观察锂枝晶的晶体结构以及阳极表面SEI的化学成分、原始形态和原子级的空间分布。但cryo-EM分析范围很小,且只能探测 SEI中的晶体组分。为检测锂金属表面SEI的较大区域和无定形物种,Kourkoutis等报道了cryo-STEM技术的使用。与TEM和cryo-EM不同,电化学石英晶体微天平(EQCM)和原子力显微镜(AFM)都是无损检测技术,可在室温和常压下工作,从而保留了SEI膜的原始状态,但几乎不提供分子信息。此外,原位二次离子质谱法(SIMS)是当前最前沿的表面分析表征技术,可揭示真实表面和近表面原子层的化学成分,且可用于鉴定有机成分的分子结构。为获得SEI更多的化学信息,通常会结合不同的表征技术。4. SEI中Li+的传输机理经过一系列复杂的氧化还原反应,在阳极表面形成了由有机和无机复合组成的稳定SEI膜,这在很大程度上控制了界面上Li+的传输,并从本质上决定了电池的电化学性能。目前SEI中Li+的传输机理尚未得到充分解释。对SEI的化学成分和空间结构的清晰认识是研究Li+在SEI内传输机制的前提。若能发现SEI的化学成分和结构与Li+在SEI中传输路径的关系,它将为电解液设计、人工界面优化和计算仿真提供指导。常用于石墨,硅或锂金属阳极的三类电解液(醚基、酯基和烷基碳酸酯)均可在电极表面还原为SEI的无机组成(如Li2CO3和Li2O)。某些含F的电解液可能会还原为LiF。在这些化合物中,Li2CO3是电子导体,同时其离子电导率相对较高(≈10-8S cm-1),而LiF是电子绝缘体,离子电导率较低(≈10-13-10-14 S cm-1),对Li+的传输贡献很小。单一化合物组成无法达到理想SEI膜所需的功能。当不同组分在SEI中共存时,它们可以相互协同,形成异质结构,从而提高电池阳极侧的离子导电性和电子绝缘性。很难从实验角度表征阳极表面超薄多组分SEI中Li+的扩散,而理论计算可用于预测LIBs电极材料中的锂离子动力学。2011年,Harris等人根据飞行时间二次离子质谱(TOF-SIMS),提出SEI的致密内层由Li2O或Li2CO3或两者组成。之后,Harris等通过基于密度泛函理论(DFT)和实验证据的理论计算,验证了Li+在SEI膜中的扩散机理。结果表明,Li+通过knock-off机制向更高的O配位方向扩散,而非穿过Li2CO3晶格中的空位直接跃迁。此外,Li+在SEI膜内混合相LiF/Li2O中的扩散速度明显快于纯LiF或Li2O相(图8a)。Zhang等在Si薄膜表面包覆了一层含Li2CO3和LiF的非原位SEI,研究了LiF/Li2CO3的协同作用。研究表明LiF/Li2CO3界面相不仅可以促进Li+的扩散,还可防止电解液的分解(图8b)。为了解石墨阳极的充电过程, Xu等系统地分析了不同环状/线性碳酸酯比下石墨充电过程中的四个步骤。作者证明剥离Li+的溶剂化壳是最耗能的步骤,是电池的决速步骤。此外, Janek等详细阐述了Li+通过电极与电解液间的界面前,去溶剂化过程诱导的高活化势垒(图8c)。显然,电解液的溶剂化结构对电池倍率性能起核心作用。剥离Li+的溶剂化鞘层后,裸露的Li+可进入SEI,但这个过程尚未得到实验数据的直接证实。为深入理解Li+在SEI中的传输机理,Mashayek等报道了基于DFT的第一性原理计算结果,研究了Li+在SEI的三个主要无机组分(Li2O、LiF和Li2CO3)间晶界(GB)中的扩散。研究发现Li+通过GB形成的开放通道进行扩散,且Li+在GB中的扩散速率通常快于本体,与LiF/LiF和Li2O/Li2O相比,LiF/Li2O的GB表现出最快的Li+扩散速率(图8d)。这一结果为Li+在SEI中的传输机制提供了实验研究无法提供的新视角。但真实的SEI更复杂,与模拟系统中使用的条件相距甚远,需进一步研究才能破解SEI中Li+的传输机理之谜。综上所述,理论计算基于理想化模型,与实际情况有很大不同,将这些结论与实际的SEI系统联系起来仍然是比较严峻的挑战。本文作者认为SEI的多组分内部致密层起着真正的保护作用;尽管一些文献报道LiF是离子绝缘体,但Li+仍可通过SEI中LiF的GB扩散,可改善电池的电化学性能。
图8 SEI中Li+可能的扩散机理与路径5. SEI中LiF的作用基于先前的讨论,SEI的主要作用是保护电解液免于分解。LiF是SEI中的一个重要组成部分,它在电化学性能中起着核心作用;但近年来,关于其在SEI中所起的作用存在一定争议。5.1保护作用自SEI的概念提出以来,其化学成分(特别是LiF)和结构受到广泛关注。随着科学技术的不断进步与先进表征技术的发展,SEI中的化学成分变得越来越清晰。其中,LiF被认为是SEI中的关键组成,在控制Li+的均匀传输和沉积中起着重要作用。Archer等报道了1 m LiTFSI/PC电解液中添加一定量的LiF作添加剂,可使Li金属的沉积和溶解更加均匀,并改善了电池在室温下的长循环稳定性。受此启发,大量研究致力于通过LiF修饰界面保护锂金属来改善电池的电化学性能。其中,原位生成LiF和在锂金属表面人工(非原位)制备LiF均认为是未来的发展方向。5.2 非保护功能近年来关于SEI中起保护作用的成分存在分歧。一些报道指出,LiF不存在于SEI的致密内层。换句话说,LiF在SEI中不起保护作用,这挑战了长期以来认为的LiF在防止电解液分解中起关键作用的公理。Lucht等报道在LiDFOB-FEC电解液中锂金属表面纳米结构的LiF被Li2CO3和草酸锂层覆盖,因而LiF并不与电解液直接接触(图9a),故认为LiF不是SEI的保护成分。Cui及其同事利用cryo-STEM和电子能量损失谱(EELS)来识别高氟化电解液体系中锂金属表面SEI中的LiF(图9b),也发现LiF不存在于致密SEI中,而是直接沉积在阳极表面,因而认为LiF并不是阳极钝化膜的主要贡献者,也不影响Li+在致密SEI中的传输。Liu等人通过原位EQCM和AFM来定量和表征1 M LiPF6EC/DMC电解液中石墨表面的SEI(图9c),研究发现LiF在石墨边缘形成,防止电解液与石墨接触的主要是内部SEI层中的LEDC,这也表明LiF不是SEI的保护组分。Zhu等采用原位液体二次离子质谱技术(liquid-SIMS)来探测SEI膜的实时形成。研究表明,内层SEI是致密、无机的,但不含LiF,而外层SEI富含有机物,电解液可在其中扩散和渗透。基于liquid-SIMS测得的化学成分,建立了SEI膜的动态化学图谱(图9d)。总之,这些发现为SEI结构的多尺度分析提供了新的视角,挑战了人们对SEI中物质分布及其对阳极稳定性影响的传统看法。
图9 a)不同电解液中的SEI模型;b)Cryo-STEM获得的SEI结构示意图;c)首次锂化时界面形成示意图;d)LiFSI/DME电解液中Cu表面SEI形成机理示意图及相应的SEI结构模型6. LiF的物理性质基于上一节的讨论,仍不能断言哪种观点正确,但对LiF物理特性的深入了解至关重要。但由于若干因素(如LiF颗粒的大小、SEI中LiF的分布、LiF形成方法(从原位到非原位)和所用电解液等)使得对其的理解变得困难。理论上,块状LiF晶体具有诸如高机械强度、低溶解度、宽带隙(有效阻止电子隧穿)和高电压窗口(6.4 V vs Li/Li+)等物理特性,表明LiF可用作SEI的合适组分。大量研究也表明LiF是SEI中不可避免的成分之一。尽管块状LiF是电子和离子绝缘体(10−13-10-14 S cm-1),但富含LiF的SEI在Li+传输方面具有很大优势,对调节Li+通量的均匀沉积起到重要作用并改善了电池的电化学性能,这与它的离子绝缘性质背道而驰。显然 ,对LiF在微观条件下的一些物理性质仍然模糊。据报道,当与其他成分(Li2O,Li2CO3,LiOH)形成纳米尺度的界面时,LiF表现出高离子电导率、低扩散能和高表面能。考虑到LiF宏观和微观特性之间的差异,未来需要对LiF的固有保护作用进行基础研究。7. SEI中 LiF的来源LiF的原位形成主要是由于热力学的不稳定。正如Liu等报道的那样,痕量水存在的情况下,LiF的形成与PF6-的水解直接相关,从而导致石墨边缘处LiF的形成,但其含量较少,不足以保护电解液不被分解。为获得高F含量的稳定SEI, Fan等采用高浓电解液(10 m EC/DMC),原位形成的富LiF SEI可稳定锂金属阳极。在这种情况下,FSI-是氟的唯一来源。值得注意的是,原位形成的LiF SEI具有快速自修复功能,这与人工制造的LiF SEI膜有很大不同。尽管非原位LiF SEI膜也有一定自愈能力,但电池的电化学性能却不尽人意。目前形成LiF SEI的方法很多,如将LiF作为添加剂直接添加到电解液中,含F的化合物(HF)作为添加剂,和氟化电解质。事实证明,氟化电解质有助于产生高LiF含量的稳定SEI膜并调节Li+的沉积行为,延长LMBs的寿命。大多数氟化电解质都涉及含F的溶剂和Li盐。其中,含F 锂盐可能更好,因F原子的吸电子特性和氟化阴离子的离域电荷,它们易溶于双极性非质子溶剂中。7.1 LiF 和HF添加剂LiF作添加剂是调节SEI化学成分的便捷方法,它可在Li金属表面形成一层薄的LiF保护膜,均匀化Li+通量并抑制锂晶体的生长。Shiraishi等报道在非水有机电解液中少量HF作功能添加剂可防止Li枝晶的形成。此外,作者发现在Li金属表面上包覆一层致密的薄LiF/Li2O复合膜,可使电流分布均匀。为解决SEI不稳定的问题,Wang等报道了一种活性聚合物复合膜(由含LiF纳米粒子和氧化石墨烯纳米片的聚合Li盐组成),可作为稳定SEI的前驱体,表现出优越的钝化性能和机械强度(图10a)。但这些方法不太可能在锂金属表面形成连续且致密的LiF层。相反,分散的LiF纳米颗粒可能形成许多弱连接的GB,在充放电过程中易破裂。7.2氟化电解液大量研究工作表明,含氟电解液(包括含F的有机溶剂、添加剂或Li盐)的分解可在阳极表面形成LiF。本文作者将其统称为LiF的原位形成。7.2.1含F有机溶剂/共溶剂/添加剂从理论上讲,由于含F官能团具有强的吸电子性,因此与常规有机溶剂相比,含F有机溶剂通常具有较低的LUMO能级,因而在阳极表面更可能发生还原分解。此外,理论计算表明若含氟溶剂分子位于Li+的一级溶剂化壳中时则较易还原。FEC是含氟溶剂的典型代表,作为溶剂、助溶剂或添加剂时,可在Li金属表面形成均匀、致密的含氟SEI,从而促进Li的均匀沉积,并提高LMB的库仑效率和循环稳定性。Zhang等报道的新型电解液中FEC和NO3-均引入到溶剂化壳中改变Li+的溶剂化结构,从而形成了一层均匀的富LiF SEI,有效抑制Li枝晶的生长并改善库伦效率(图10b)。Aurbach及其同事将FEC作为共溶剂加入EC电解液中,电池表现出稳定的循环性能。除FEC外,反式二氟乙烯碳酸酯(DFEC)也被认为是一种有效的含F溶剂,用于在Li金属表面生成富LiF的SEI膜。7.2.2 含F锂盐几乎所有含F的Li盐(如LiPF6、LiBF4、LiFSI、LiDFOB、LiTFSI、LiFTFSI、 LiDFP)均能形成含LiF的SEI,特别是在高浓电解质中。由于其阴离子的离域电荷和F原子的电子吸收特性,这些锂盐可高度溶于双极性非质子溶剂。Armand及其同事基于DFT理论计算,验证了LiFSI比溶剂具有更低的LUMO能级,表明电解液中的LiFSI可在阳极表面优先分解。Wang等报道的全氟电解液可抑制锂金属表面Li枝晶生长和阴极侧的电解液氧化(图10c),使电池具有较高的循环稳定性。此外,Wang 组也报道了通过增加碳酸酯电解液中LiFSI的浓度获得富LiF的SEI,使得电池显示出优越的电化学性能,同时该电解液体系中Li金属表面富LiF-SEI主要源于LiFSI的还原,有效阻止Li枝晶的生长和持续的电解液分解(图10d)。He等的研究表明,原位形成的致密LiF薄层因其快速的自修复能力可有效保护Li金属(图10e)。考虑到电池高安全性的需求,固态电解质被广泛认为是解决RLB中液态有机电解液安全问题的潜在方案。Fan等利用6 m LiFSI/DME在Li和固态电解质(Li3PS4)之间原位形成一层富含LiF的薄SEI,可有效抑制Li枝晶的形成和生长并防止副反应的发生(图10f)。
【总结与展望】1. 总结本综述涵盖了阳极表面SEI的结构和化学成分的最新进展,总结了SEI模型的演变,重新审视了SEI形成的基本理论,旨在对SEI的性质和更好的界面设计有一个清晰的认识,加深了对SEI以及LiF在SEI中的作用的进一步理解。2. 展望纵观电化学发展的历史,界面问题一直是一个重要课题。目前关于SEI的组成和空间分布的许多基本问题仍不清楚,需进一步系统研究以明确哪些物种可在阳极表面形成以及如何形成。大量论文中提出的SEI结构仅是基于表征结果的示意图,可能并不代表SEI的真实状态。通过实验来证实SEI的真实结构仍然是一个巨大挑战。鉴于Li+去溶剂化过程是决定电池电化学性能的一个决速步骤,调节电解液的溶剂化结构具有重要意义,从而可在阳极表面原位生成SEI,被认为是获得高性能电池的很有前途的研究方向。虽然大量研究致力于在锂金属表面构建人工SEI,但相应的电池性能仍达不到实际应用所需的水平。若能在原子水平上设计SEI也许能实现高能量密度和安全的电池。基于锂金属表面天然膜的成分及理论计算获得的SEI中Li+的迁移机理,作者提出一个大胆的观点:在SEI的致密内层中,LiF并不是决定SEI是否起保护作用的唯一化学成分,而是多种组分共同承担着保护电解液不被分解的重任。无论LiF层是以原位还是非原位方法形成,它均单独以纳米颗粒的形式存在于SEI中。在这种情况下,LiF粒子间的GB有利于Li+在SEI中的均匀扩散和Li金属的均匀沉积。SEI中的GB越多,Li+的传输越均匀,因此可有效抑制锂枝晶。此外,若可以设计GB的结构,则有望消除Li枝晶;若可在原子水平上控制GB的大小,并人工构造一层含LiF和Li2O异质结构的SEI层,有望实现更安全的高能量密度电池。目前由于GB结构的复杂性和表征技术的局限性,关于实际晶体材料中GB结构的知识仍然有限,因此,对SEI中的GB结构和行为的研究将成为未来的研究重点,这很可能成为可以解释SEI中Li+传输机理的研究方向。众所周知,电池是在封闭环境中工作的,只有通过原位观察技术获得的电化学反应信息才更可靠,才能了解电池实际工作过程中发生的化学和电化学反应,有助于推断其工作机理并设计出更好的SEI。因此,急需开发非破坏性的原位表征技术来研究SEI。同时,为了揭示SEI的化学性质,应鼓励跨学科研究。显然,在RLB上使用先进的同步加速器和原位表征技术,在某种程度上可以实现对工作电池中SEI变化的实时、动态和准确检测。为此,应鼓励学术界和工业界进行更多更好的合作。此外,SEI中Li+的扩散机理还需进一步深入研究。近年来,随着机器学习和人工智能的兴起,将其应用于 SEI研究可能会产生令人惊讶的结果。Jian Tan, John Matz, Pei Dong, Jianfeng Shen, and Mingxin Ye. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Adv. Energy Mater. 2021.DOI:10.1002/aenm.202100046声明:本文转载于公众号,能源学人,转载文章旨在分享与传播知识,促进交流,版权归作者所有,如有侵犯,还请及时告知,我们及时改正。同时感谢文章作者,精心书写文章,向作者致敬!