(2-22)函数隐零点问题的处理策略
相关推荐
-
【高考研究】函数零点问题的解题策略
[注]转自:高中数学解题研究群416652117. (5)本公众号对优秀作者和名师一般会附上"作者简介",以让广大读者更好地了解作者的研究成果和方向,以便进一步学习作者的相关数学思 ...
-
二次函数中的线段问题破解策略
[典型例题1] [答案解析]解: [典型例题2] [答案解析]解:
-
等高线及嵌套函数的解决策略等高线,其实是...
等高线及嵌套函数的解决策略 等高线,其实是地理的专用名称.然而学科之间在某种程度上的共同与共通的特性,学下鲁迅,"拿来主义",用之于数学亦然. 譬如,在函数之中解决零点相关问题,等 ...
-
导数隐零点问题的破解策略
导数隐零点问题的破解策略
-
教主新作:隐零点问题的解决策略
隐零点问题的解决策略
-
函数导数高考题分析:隐零点,同构,端点放缩之2020年全国Ⅰ卷(山东)
函数导数高考题分析:隐零点,同构,端点放缩之2020年全国Ⅰ卷(山东)21 函数导数研究函数性质和证明不等式问题,一直都是以高考压轴题的地位出现,也是大家的噩梦,但其实这类问题最大的敌人是自己心中的 ...
-
回避隐零点,函数最值求解不再难——用切线不等式放缩法求指对混合型函数最值
第一篇:做一题,归一类,得一法(一)--求向量的数量积时遇到外心用投影 第二篇:做一题,归一类,得一法(二)--用几何法判断直线与椭圆.双曲线的位置关系 第三篇:做一题,归一类,得一法(三)--一类直 ...
-
重庆市南开中学高2021届第五次月考第22题:导数之隐零点代换
重庆·云师堂 有人问,离2021年高考已不足三个月,是否应该摒弃难题,回归基础? (补充:成绩中等) 既然问,就说明自己权衡不下,希望得到建议. 不才,只能粗略地回答:根据以往的经验,眼下还是强攻一些 ...
-
河北衡水中学高三第二次联合考试(新高考)22隐零点或切线放缩
河北衡水中学高三第二次联合考试(新高考)22隐零点或切线放缩
-
函数中的极值点偏移解决策略(四)隐零点放缩法
函数中的极值点偏移解决策略(四)隐零点放缩法
-
高中数学——函数与导数“隐零点”问题的3...
高中数学--函数与导数"隐零点"问题的3种方法 整体代换,将超越式转化为普通式:反代消参,构造关于零点的单一函数.降次留参,建立含参数的方程
-
备战2022高考020题:函数导数--隐零点
有人跟我说,你把这些可以秒杀的题目做成一个系列,一定会有很多人喜欢. 那肯定啊,大部分找老师的学生,并不是想让老师教授什么学习方法或者思维方式,而是希望能通过金钱来代替自己的思考,用金钱换取知识,用所 ...