学徒作业:TCGA数据库单基因gsea之COAD-READ

发表在Cancer Management and Research的简单数据挖掘杂志:Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer,仔细下载文献学习。

数据下载

关于TCGA数据下载,我挑选了部分,写了6个数据下载系列教程

但是,建议你选择UCSC的xena数据库下载方式。

TCGA数据下载

首先看表达差异

(A) APOC1 was highly expressed in CRC (n=380) samples compared to adjacent normal (n=50) samples based on The Cancer Genome Atlas (TCGA) database (unpaired t-test, P=0.012). (B) APOC1 was highly expressed in colorectal cancer samples compared to the adjacent normal samples of a matched paired group (n=25) based on The Cancer Genome Atlas (TCGA) database (paired t-test, P=0.002).

表达差异

然后看生存效果

我已经在生信技能树已经多次介绍过生存分析:

而且使用TCGA数据库来看感兴趣基因的生存情况非常简单,一个网页工具即可,都无需R语言了

(F) and (G) Kaplan– Meier survival analysis according to APOC1 expression in 140 patients with CRC. The overall survival (OS) and disease-free survival (DFS) for patients with high versus low APOC1 expression. The difference is statistically significant based on the log-rank test (both P<0.001).

生存分析

单基因的GSEA

首先需要根据感兴趣的基因表达量高低,对病人进行分组。

(A) GSEA-generated heatmap for highly enriched genes in the MAPK signaling pathway in the APOC1-higher expression group compared to the APOC1-lower expression group from the TCGA COAD-READ dataset.

对病人进行分组

运行GSEA,需要指定感兴趣的通路进行可视化

(B) GSEA on the TCGA COAD-READ dataset identified MAPK signaling pathways as a regulatory target of APOC1. The GSEA enrichment plot shows values for normalized enrichment score (NES) =1.87 and nominal P-value =0.004.

GSEA结果

如果大家感兴趣GSEA分析原理和用法,看合辑

这个任务看看哪个学徒接单哦!实际上是3个分析,差异分析+生存分析+单基因GSEA

(0)

相关推荐