EL之GB(GBC):利用GB对二分类问题进行建模并评估
EL之GB(GBC):利用GB对二分类问题进行建模并评估
输出结果
T1、纯GB算法
T2、以RF为基学习器的GB算法
设计思路
核心代码
# nEst = 2000
# depth = 3
# learnRate = 0.007
# maxFeatures = None
nEst = 2000
depth = 3
learnRate = 0.007
maxFeatures = 20
rockVMinesGBMModel = ensemble.GradientBoostingClassifier(n_estimators=nEst, max_depth=depth,
learning_rate=learnRate,
max_features=maxFeatures)
rockVMinesGBMModel.fit(xTrain, yTrain)
auc = []
aucBest = 0.0
predictions = rockVMinesGBMModel.staged_decision_function(xTest)
for p in predictions:
aucCalc = roc_auc_score(yTest, p)
auc.append(aucCalc)
if aucCalc > aucBest:
aucBest = aucCalc
pBest = p
赞 (0)