DL之LSTM之UvP:基于TF利用LSTM基于DIY时间训练1200个数据预测后200个数据状态

DL之LSTM之UvP:基于TF利用LSTM基于DIY时间训练1200个数据预测后200个数据状态


输出结果

设计思路

训练记录全过程

INFO:tensorflow:loss = 0.496935, step = 1
INFO:tensorflow:global_step/sec: 7.44562
INFO:tensorflow:loss = 0.0289763, step = 101 (13.432 sec)
INFO:tensorflow:global_step/sec: 6.42037
INFO:tensorflow:loss = 0.0200101, step = 201 (15.575 sec)
INFO:tensorflow:global_step/sec: 5.56483
INFO:tensorflow:loss = 0.0195363, step = 301 (17.971 sec)
INFO:tensorflow:global_step/sec: 5.30867
INFO:tensorflow:loss = 0.0141311, step = 401 (18.836 sec)
INFO:tensorflow:global_step/sec: 5.41209
INFO:tensorflow:loss = 0.014299, step = 501 (18.479 sec)
INFO:tensorflow:global_step/sec: 4.92611
INFO:tensorflow:loss = 0.0155927, step = 601 (20.298 sec)
INFO:tensorflow:global_step/sec: 5.11247
INFO:tensorflow:loss = 0.0130529, step = 701 (19.563 sec)
INFO:tensorflow:global_step/sec: 4.71378
INFO:tensorflow:loss = 0.0131998, step = 801 (21.211 sec)
INFO:tensorflow:global_step/sec: 4.71155
INFO:tensorflow:loss = 0.0143074, step = 901 (21.224 sec)
INFO:tensorflow:global_step/sec: 5.07501
INFO:tensorflow:loss = 0.0160928, step = 1001 (19.704 sec)
INFO:tensorflow:global_step/sec: 4.85088
INFO:tensorflow:loss = 0.00991265, step = 1101 (20.615 sec)
INFO:tensorflow:global_step/sec: 4.93806
INFO:tensorflow:loss = 0.0125441, step = 1201 (20.251 sec)
INFO:tensorflow:global_step/sec: 5.40711
INFO:tensorflow:loss = 0.0127672, step = 1301 (18.497 sec)
INFO:tensorflow:global_step/sec: 4.92733
INFO:tensorflow:loss = 0.0109727, step = 1401 (20.294 sec)
INFO:tensorflow:global_step/sec: 4.42869
INFO:tensorflow:loss = 0.0138402, step = 1501 (22.578 sec)
INFO:tensorflow:global_step/sec: 4.902
INFO:tensorflow:loss = 0.00974652, step = 1601 (20.401 sec)
INFO:tensorflow:global_step/sec: 5.87293
INFO:tensorflow:loss = 0.010258, step = 1701 (17.029 sec)
INFO:tensorflow:global_step/sec: 5.88471
INFO:tensorflow:loss = 0.0119193, step = 1801 (16.991 sec)
INFO:tensorflow:global_step/sec: 5.89885
INFO:tensorflow:loss = 0.0130985, step = 1901 (16.951 sec)
INFO:tensorflow:Saving checkpoints for 2000 into C:\Users\----------\AppData\Local\Temp\tmpihfq7_j1\model.ckpt.
INFO:tensorflow:Loss for final step: 0.0151946.
INFO:tensorflow:Starting evaluation at 2018-10-17-02:30:52
2018-10-17 10:30:52.385626: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0, compute capability: 5.0)
INFO:tensorflow:Restoring parameters from C:\Users\------------\AppData\Local\Temp\tmpihfq7_j1\model.ckpt-2000
INFO:tensorflow:Evaluation [1/1]
INFO:tensorflow:Finished evaluation at 2018-10-17-02:30:54
INFO:tensorflow:Saving dict for global step 2000: global_step = 2000, loss = 0.00669927, mean = [[[-0.00664094]
  [ 1.0939678 ]
  [ 1.05662227]
  ...,
  [ 0.36486277]
  [ 0.60855114]
  [ 0.78335267]]], observed = [[[ 1.19162858]
  [ 1.01151669]
  [ 1.2492404 ]
  ...,
  [ 0.58971846]
  [ 0.59429663]
  [ 0.75463229]]], start_tuple = (array([1199], dtype=int64), array([[ 0.49354312]], dtype=float32), [array([[  2.80782163e-01,  -2.79586822e-01,  -1.27018601e-01,
         -1.37267247e-01,  -9.66532946e-01,   1.77575842e-01,
          2.53590047e-01,  -1.71174794e-01,   3.26722264e-01,
         -1.53287530e-01,   3.41674328e-01,  -2.82110858e+00,
         -8.25344026e-02,  -6.24774337e-01,  -1.03143930e-01,
          1.69074144e-02,   5.53107023e-01,   6.09656096e-01,
          2.15942681e-01,   2.38117671e+00,  -4.35474813e-01,
         -8.18751156e-02,  -8.21040720e-02,   5.50756678e-02,
          3.19993496e-01,   4.17956561e-02,   3.75264943e-01,
         -4.79493916e-01,   6.70328498e-01,  -2.11113644e+00,
          7.29807839e-03,   4.77858186e-02,   6.35303259e-01,
         -1.65449232e-01,   7.43012428e-01,  -3.35779548e-01,
          1.10672331e+00,   8.13182443e-02,   3.63576859e-01,
          2.60270387e-03,   1.08874297e+00,  -1.23278670e-01,
          4.51275796e-01,   1.38471827e-01,  -2.19891405e+00,
          4.55228150e-01,   3.76752585e-01,   4.18297976e-01,
         -1.29674762e-01,  -5.27077794e-01,   2.10172087e-02,
          9.18253139e-02,  -4.42963123e-01,   8.60494375e-01,
         -1.56141710e+00,   6.13127127e-02,   1.06652260e+00,
         -1.64958403e-01,  -2.49342889e-01,  -3.20325941e-02,
          6.25251114e-01,  -9.56333756e-01,   6.22645095e-02,
         -1.85177767e+00,  -1.18895024e-02,  -1.25629926e+00,
         -8.09278548e-01,  -1.56489462e-01,   4.20603305e-01,
          1.36081472e-01,   4.73593265e-01,  -7.08300769e-02,
         -9.10878852e-02,   2.92861044e-01,  -1.19632289e-01,
          6.10221215e-02,  -4.23507988e-01,   1.39661419e+00,
         -3.00004274e-01,  -2.10687280e-01,  -1.49481639e-01,
          3.21967512e-01,   2.97538459e-01,  -1.35252133e-01,
          1.09200977e-01,   1.85446128e-01,   3.46938014e-01,
          2.08598793e-01,  -3.52784902e-01,  -2.46544376e-01,
          7.78264701e-02,  -3.51242304e-01,  -3.57431412e-01,
          3.66707861e-01,   1.21410508e-02,  -8.59300196e-01,
          4.11556125e-01,  -6.82742074e-02,   1.10266757e+00,
         -4.94556457e-01,  -5.72922267e-02,   3.00662041e-01,
         -1.90176621e-01,  -6.88186646e-01,   1.37748182e-01,
          3.30467284e-01,   6.39625788e-01,  -5.39625525e-01,
          3.10799032e-01,  -1.74361169e-01,  -1.03101039e+00,
          1.62974745e-01,  -4.43051122e-02,  -8.31307888e-01,
         -8.95474315e-01,   1.87550467e-02,  -2.91507039e-02,
         -2.40048468e-01,  -4.92638528e-01,   1.22031212e+00,
         -1.03123677e+00,   1.15175478e-01,  -4.30590212e-01,
          3.07760298e-01,  -2.37644076e+00,   6.80060592e-04,
          1.45029235e+00,  -1.63179412e-01]], dtype=float32), array([[  1.56333834e-01,  -8.78753215e-02,  -4.04292978e-02,
         -5.39183915e-02,  -4.08501059e-01,   6.91992342e-02,
          1.21542148e-01,  -7.25040585e-02,   1.23656943e-01,
         -6.08574860e-02,   1.73645392e-01,  -5.46148360e-01,
         -3.08538955e-02,  -2.52630085e-01,  -4.92266566e-02,
          6.05375459e-03,   2.12676853e-01,   2.12552696e-01,
          9.57069546e-02,   6.01795316e-01,  -1.65934741e-01,
         -2.18765661e-02,  -2.14456674e-02,   2.04520095e-02,
          1.51839703e-01,   1.74900144e-02,   1.79528132e-01,
         -1.59714103e-01,   2.98072249e-01,  -5.45185566e-01,
          2.36531044e-03,   1.51053490e-02,   3.07202935e-01,
         -5.08357324e-02,   2.96984106e-01,  -1.09672762e-01,
          5.08848071e-01,   3.89396697e-02,   1.46594375e-01,
          5.78465813e-04,   4.44073975e-01,  -5.69530763e-02,
          1.92802429e-01,   4.73112799e-02,  -5.95022798e-01,
          1.91753775e-01,   1.71405807e-01,   1.87628955e-01,
         -5.02609573e-02,  -2.27603659e-01,   8.66749138e-03,
          3.60240042e-02,  -2.11831197e-01,   4.81612295e-01,
         -4.55988973e-01,   2.93113627e-02,   4.87764150e-01,
         -6.91987425e-02,  -1.01128876e-01,  -1.40920663e-02,
          2.75271446e-01,  -4.79507029e-01,   2.70537268e-02,
         -4.76451099e-01,  -4.29895753e-03,  -4.62495953e-01,
         -3.31368059e-01,  -7.12227523e-02,   2.01868847e-01,
          5.63942678e-02,   1.58110172e-01,  -1.71409473e-02,
         -3.63412760e-02,   1.35076761e-01,  -4.54869717e-02,
          1.97849423e-02,  -2.08776698e-01,   5.99132776e-01,
         -9.71668810e-02,  -8.88494924e-02,  -5.91017641e-02,
          1.46009699e-01,   1.49578944e-01,  -6.66293278e-02,
          4.50978763e-02,   5.90396933e-02,   1.33028805e-01,
          7.05365539e-02,  -1.45839781e-01,  -9.20177996e-02,
          3.21419686e-02,  -1.38211146e-01,  -1.18100852e-01,
          2.14208573e-01,   4.81602084e-03,  -3.42105478e-01,
          1.84565291e-01,  -2.92618871e-02,   3.88085902e-01,
         -2.48049170e-01,  -2.79053152e-02,   1.52629077e-01,
         -6.13191538e-02,  -3.08730781e-01,   4.58811522e-02,
          1.47217959e-01,   2.71202058e-01,  -2.18348011e-01,
          1.24512725e-01,  -5.67152649e-02,  -5.15142381e-01,
          5.49797714e-02,  -1.24295102e-02,  -4.49374735e-01,
         -3.59201699e-01,   7.46859424e-03,  -1.10175423e-02,
         -1.09787628e-01,  -2.06070423e-01,   3.97450179e-01,
         -3.43233734e-01,   2.82084029e-02,  -2.50802487e-01,
          1.35858551e-01,  -7.15136528e-01,   1.41225886e-04,
          3.52943033e-01,  -5.17948419e-02]], dtype=float32)]), times = [[   0    1    2 ..., 1197 1198 1199]]
(0)

相关推荐