初中数学之有关线段,角的几何题解析视频
角的分类:
(1)锐角:小于直角的角叫做锐角
(2)直角:平角的一半叫做直角
(3)钝角:大于直角而小于平角的角
(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°
相关的角:
1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角互为补角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
角的分类:(1)锐角(2)直角(3)钝角 (4)平角 (5)周角
相关的角:
(1)对顶角(2)互为补角 (3)互为余角
邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
角的性质
(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
角的性质
1 同角或等角的余角相等
2 过一点有且只有一条直线和已知直线垂直
3 过两点有且只有一条直线
4 两点之间线段最短
5 同角或等角的补角相等
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
距离
1、两点的距离
点到直线的距离
2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
两条平行线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
平行线
1、定义:在同一平面内,不相交的两条直线叫做平行线。说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等。
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补。