教你用乐高砖块拼出圆形球体
你知道如何用方形的乐高积木建造圆形的东西吗?这里面涉及到哪些数学知识?以及《我的世界》在这其中又是如何给我们带来启发的呢?今天的这篇文章我们就来探索一下这些问题。
为了帮助回答这些问题,我们特意编译了这篇来自bricknerd上Deep Shen的客座文章,详细讨论拼搭乐高球体的问题。Deep Shen在这方面有着许多令人惊叹的作品。
*文章来自Deep Shen,酷玩潮编译
方形砖的圆形形状
乐高积木并不是一种天生就适合用来建造圆形的媒介。毕竟,基础的积木1×1砖块有一个正方形的体型,而乐高底板上的螺柱也是在一个规则的正方形网格里的。不过,有许多精彩的乐高作品都包括圆形——各种圆柱体甚至球体。在我开始制作自己的乐高泰姬陵之前,我并没有多少用乐高积木制作这些形状的经验。这个著名地标(被评选为“世界新七大奇迹”)的焦点就是它巨大的圆顶,它坐落在一个被称为穹顶的圆柱形底座上。位于泰姬陵基座四角的尖塔(细长的塔楼),本质上也是堆叠的圆柱体。
在我的童年时代,乐高是我从未玩过的东西,然而,当我看到肖恩·肯尼(Sean Kenney)建造的帝国大厦模型时,这些东西让我眼前一亮。看到这个模型,我便想尝试着用乐高来建造我自己的众多摩天大楼模型,这些摩天大楼都是我长期以来所喜爱的(当然是从帝国大厦开始)。
在我发现肖恩·肯尼的模型后不久,我也偶然发现了已故的亚瑟·古吉克(Arthur Gugick)建造的泰姬陵模型。这个惊人的模型在乐高创意百变高手10189套装之前就已经出现了,并且成为了一部名为《泰姬陵》的澳大利亚独立电影的核心道具(故事围绕着一位父亲与他疏远的女儿通过建造乐高泰姬陵模型重新建立联系)。我马上就知道我想尝试做我自己版本的泰姬陵,但我还没有准备好。我还有很多东西要学,才能最终对这个世界奇迹做出恰当的还原。
尽管肖恩·肯尼的帝国大厦模型给人留下了深刻的印象,但我从直觉上理解它是如何建成的并没有什么困难。像帝国大厦这样的摩天大楼基本上是一叠楼层——你只需要建造一些楼层设计的变体,然后你可以根据需要,重复多次来建造整个大楼。当你建造经典摩天大楼的顶部时,事情确实变得更有趣了(在那里它逐渐变细成为一个尖顶),但在大多数情况下,你仍然在处理几何形状(也有几个明显的例外,如克莱斯勒大厦的皇冠)。不过泰姬陵却包括各种有机形状——拱门、尖塔,当然还有圆顶,而我对用乐高搭建圆形的东西一窍不通。
莱戈建筑、创意百变高手和我的泰姬陵版本的比较
在接下来的几年里,当我开始建造各种摩天大楼的模型时,我的脑海中总是浮现出泰姬陵。事实上,有不止一次,我开始尝试制作泰姬陵模型,但还是放弃了,因为我不知道如何还原拱门或使一些元素发挥作用。直到2021年——现在我已经有了20多个大型的MOC(实物的和虚拟的)拼搭经验,我终于觉得我准备好了,可以去挑战泰姬陵了。
但我仍然需要深入研究所有可以用来创造圆形的乐高技巧——我基本上在互联网上搜索了所有可以找到的关于这个主题的信息。每一步都让我感到惊讶,并被AFOL社区无穷无尽的创造力所启发(我也挖掘了我的世界社区创造的一些工具)。
这可能是我作为一个建造者成长的证明,这次我成功地轻而易举地完成了泰姬陵的设计。我使用了我从建造摩天大楼模型中学到的每一个技巧——SNOT、半墙骨偏移、斜墙等,以及我从研究中获得的一些新技巧。我希望这篇文章能对用乐高搭建圆形建筑的朋友有所启发。我不能说我发明了本文中所列的这些技巧,但我很高兴在此将它们编入文中,供今后参考。
圆的平方
那么,在用乐高创造圆形的过程中到底涉及到了什么知识呢?这节文章的标题提到了“圆的平方”,这是一个古老的数学问题,几个世纪以来人们一直试图解决这个问题,直到1882年被证明不可能解决。然而,通过使用数字π(π)的近似值,有可能足够接近。
同样地,这里描述的所有技巧都试图使用方形/矩形砖或板来创造圆形的最佳近似值。结果从来都不是完美的,乐高媒介的局限性使得曲线锯齿和缝隙总是显而易见的,特别是当你近距离观察你的模型时。但还是可以创造一个相当有说服力的圆形感官,至少当你从远处看你的模型时。
1) 使用SNOT来创造小圆柱体
对于泰姬陵的尖塔,我不想被乐高的小圆柱体零件所局限。我想尝试一种不同的方法来建造圆柱体,它可以被扩展到我需要的任何高度。我已经很熟悉使用弧形斜坡和SNOT来创造圆形形状(我曾用这种技术来建造克莱斯勒大厦模型中的皇冠)。同样的技术也可以用来制作各种直径的圆柱体。下图中所有的圆柱体都可以以两个螺柱的高度递增来建造。
我的克莱斯勒大厦模型的顶部
使用弧形坡度和SNOT建造的各种圆柱体
根据我使用的比例,最小的圆柱体对泰姬陵的尖塔来说是刚刚好的。理想情况下,尖塔应该在上升过程中逐渐变细——就像在真正的泰姬陵中那样。但遗憾的是,没有什么简单方法可以进一步缩小最小的圆柱体的直径。
近距离观察最小的圆柱体
泰姬陵的尖塔
2) 弯曲乐高墙体以创造圆形形状
用乐高建造圆墙的一个“暴力”方法是建造直墙,然后把它们弯曲成一个圆。你的墙越长,它的弯曲度就越大,使你更容易把它弯曲成一个完整的圆。每层所需的1×2砖的数量往往是72块左右,大抵是这个数。但我也见过用每层少得多的板建造的圆墙。
看看杰夫·桑德斯(Jeff Sanders)的作品,他专门从事“砖块弯曲”的研究。他有一个令人印象深刻的作品集,通过将乐高砖墙弯曲成圆形和其他各种形状而制成。
请注意,严格来说,大多数砖块弯曲技术都是“非法的”,因为你是在用乐高元素的方式来使用它们,使它们受到不应有的压力和可能的损害。这种技术的一个明显的缺点(除了它是非法的)是它不能用BrickLink的Stud.io软件进行虚拟复制。
几年前,我开始了一个不同于以往任何乐高项目的工作。我想尝试在一个圆形中做马赛克颗粒。我想出了自己的蛇形图案,并使用了超过14000块板来建造这个圆形的东西,我喜欢把它看成是某种花瓶。这个东西放在我地下室的某个角落里,因为我还没有想出一个好办法来完成它,创造出值得展示的物品。当然,欢迎大家的建议!
3) 将普通砖块与1×1圆形砖块混合使用
这个技巧使用的方法和上面一样——除了我们在墙里使用1×1的圆砖(或板),让它更容易被弯曲(和合法)。如果我们在墙上用1×3的砖(1×2的砖也可以)和1×1的圆砖交替使用,圆砖在某种程度上就像铰链一样,允许墙体弯曲形成一个圆。这种方法允许用比前一种方法更小的直径建造圆墙。
不过唯一的缺点是,由于用了1×1的圆砖,墙的纹理不均匀。可以用光面板来隐藏圆砖,创造出真正的砖墙效果(归功于Flickr上的Steve DeCraemer)。这里的1×3砖被替换成3块头灯砖,其顶部螺柱朝外。这些头灯砖用1×3的板子连接在一起,而1×4的光面板则贴在圆墙的表面,创造出砖墙的外观(这对于建造城堡来说应该是很好的)。
4)使用铰链砖和板的圆墙
我们已经看到,铰链砖对于创建有角度的墙和各种多边形(六边形、八边形等)非常有用。正规多边形的边数越多(所有边都有相同的长度),它就越接近于一个圆。我们可以利用这一事实,使用铰链件来创建圆墙。
我在这方面看到的一个教程是由Flickr上的Eggy Pop制作的。我在Stud.io中用14块1×4的铰链板重新制作了这个教程中的圆墙,完成了这个圆(本质上是一个有28条两螺柱宽边的多边形)。这个特殊圆墙的一个巧妙之处在于,它的直径(内侧有18个螺柱,外侧有20个螺柱)在螺柱方面是一个整数。正如你所看到的,4个侧面的铰链板与乐高的网格对齐,使圆墙可以牢固地连接到底座上。
那么,数字18有什么特别之处呢?让我们看看是否可以用一些数学方法来解决这个问题。假设墙的内部足够接近于一个圆,它的周长将是直径乘以π(π)=18 x 3.14 = 56.52个螺柱。现在用这个数字除以4(1×4铰链板的长度),你会得到14.13,这个数字足够接近于整数14——这正好是我们使用的铰链板的数量。
对于内径为17或19个螺柱的圆墙,不要指望有同样的效果。还有哪些数字是可行的?最接近18的两个数字是14和23(我在泰姬陵的穹顶柱上用了23)。从图片上可以看出,这两个数字不如18好用,而且只有两边的铰链板与乐高的网格对齐(通常情况下,这已经很不错了)。
可以解释一下是为什么吗?在14的情况下,需要的铰链板数量是(14 x 3.14)/ 4,大约是11。由于铰链板的数量不是偶数,所以你没有让铰链板在所有4个面都与乐高的网格对齐。在23的情况下,直径本身并不是偶数。因此,如果你将铰链板与一个轴上的网格对齐,另一个轴就会偏移半个螺柱(如果需要的话,你可以用跳板将圆墙连接到另外两边的底座上)。
泰姬陵大柱子用的圆墙
泰姬陵的穹顶柱
圆墙的一个问题是,当你只有2或4个与底座的连接点时,其余的铰链板可以自由移动,因此圆形很容易被扭曲。我想不出有什么优雅的解决方案可以让墙保持它的形状(我想你可以用长板作为连接多边形每一边和对面的十字构件,然后让这些十字构件在中间用转盘连接)。
目前,我只是建立了一个尽可能靠近圆壁的普通内壁,并使用SNOT将奶酪斜面、弧形斜面等连接到内壁上,以尽可能地填补空隙。由于柱形的外径是25个螺柱,而我需要把它放在24×24的底座上,所以我最终使用了跳板。我还需要跳板来将穹顶(用16×16螺柱的核心建造)放在圆柱的顶部。
虽然使用真实的颗粒来建造这些圆墙是很直观的,但在Stud.io中如何做呢?铰链工具允许你选择一个零件部分,并围绕一个铰链点进行旋转。在这种情况下,被选中的零件将是1×4铰链板的二分之一。当你在启用铰链工具的情况下点击该零件时,你会首先看到一个蓝色的箭头。你可以点击并拖动这个蓝色的箭头来手动旋转这块材料。或者你可以点击蓝色的箭头,得到一个白色的文本框,你可以输入精确的角度来旋转这块板。
第1步—点击铰链工具
第2步—点击要旋转的元素
对于圆墙,重要的是要确保所有的铰链板都旋转得恰到好处,否则墙的两端将不能正确地排列,使你完成这个圆形。要计算出使用的正确角度,只需用360除以你正在建造的多边形的边数,在第一个圆的情况下(18个螺柱直径)将是铰链板的数量乘以2=14×2=28。360除以28是12.85度,这是你需要在文本框中输入的数字。我倾向于将这个旋转应用于一个铰链板,然后根据需要多次复制和粘贴铰链组件(两半一起)。
第3步—点击蓝色箭头
第4步—点击文本框并输入角度
关于在Stud.io中使用铰链板的一个提示——为了能够旋转铰链,你需要使用构成铰链板的两个独立的一半部分(旋转底座和旋转顶部)。然而,当你下达BrickLink订单并从Stud.io上传零件清单时,请务必编辑你的愿望清单,用完整的铰链组件替换两半的铰链。铰链组件(两半在一起)往往比单独购买两半要便宜得多。
5)通过堆叠普通砖或板来建造球体
为了理解球体是如何用乐高积木建造的,我发现首先看一下《我的世界》是很有用的。我的世界与乐高之间有一些相似之处,那就是都是使用方形的积木,放在一个方形的网格上。一个重要的区别是,《我的世界》中的方块是完美的立方体,而基础的1×1乐高砖则不是(它的高度大于宽度)。稍后再谈这个问题。总之,在我的世界社区有许多资源可用于建造球体和其他形状的我的世界积木,我在想我是否可以利用其中的一些资源来建造乐高球体。
在我们研究三维球体之前,让我们看看二维的基本圆。我的世界的爱好者经常使用所谓的圆图。它显示了块(或像素)在一个正方形网格中的位置,最接近于一个圆。图中显示了不同直径的圆,从图中可以看出,直径越大,圆形的视觉感就越有说服力。
我的世界的圆圈图
在我的世界里,方块是完美的立方体,你也可以看看其中的一个圆,把它当成球体的侧视图。你可以把图表中的每一行看作是你正在建造的球体中的一个积木层。因此,你基本上会从一层积木开始,放在一个直径为你想建造的球体的圆里(这将是你需要的最大圆)。然后,你会用连续较小的圆堆积一层(随着你的上升),直到你达到你需要的最小的圆。在底层重复同样的步骤(随着你往下走,圆圈越来越小),你就有了一个完整的球体。
当然,用手算出这一切可能会很费劲(即使有圆图的帮助)。幸运的是,一个在线工具(Plotz Sphere Generator)[1]可以为你自动完成这个过程。你只需输入你需要的直径,就会为你生成一个球体(有3D和2D视图显示球体是如何逐层构建的)。
Plotz球体生成器中各层的三维视图
在Plotz球体生成器中查看图层的2D视图
这听起来很简单——对吗?不幸的是,如果你想用乐高积木建造这个球体,还需要做很多工作。首先,球体生成器只显示了相当于1×1乐高的积木,但你知道这些积木不可能像你在三维视图中看到的那样堆叠。你需要将1×1的砖块转换成较长的砖块,形成一个能很好地固定在一起的互锁结构。
你还需要使球体的墙壁至少有2个螺柱的深度,让每一个连续的层(当你离开中间层时,它是一个较小的圆)都能靠在紧接着的层上。还有最后一个问题——如果你用1×1的乐高砖代替我的世界与球体中的所有积木,你将不会得到一个完美的球体。你的球体会比它的宽度高一点——就像1×1的砖块一样。值得庆幸的是,在同一个网站上还有一个Plotz椭圆体生成器[2],你可以用它来补偿1×1砖块的形状。
对于我用乐高积木搭建的球体,我用Plotz创建了一个宽度和深度为36个单位,高度为30个单位的椭圆体。为什么我选择了一个与完美球体相比有点蹲的形状?请注意,椭圆体的高与宽的比例是5/6,这与1×1乐高砖的比例(高与宽的比例是6/5)是相反的。因此,当我们使用高过宽的乐高积木时,比例就会拉平,最终得到一个完美的球体。
椭圆体的宽度为36,高度为30
用乐高积木搭建的椭圆体变成了球体
这个球体看起来不错,但它有点块状。有没有办法使曲线更平滑——也许可以用乐高积木1/3的高度来制作?我们回到Plotz椭圆体生成器[3],这次我们使用的数字必须反映1×1乐高板的形状,高度和宽度的比例为2/5。我使用了50个单位的高度和20个单位的宽度,这使我们的高度和宽度的比例为5/2。这样,当我们用1×1的乐高积木板(根据需要组合成更长的板)代替我的世界方块时,我们就得到了一个完美的球体。
从侧面看这个球体,我们可以看到与之前的球体相比有了明显的改进。由于使用板而不是砖块取得了较小的梯度,曲线变得更加平滑。但当你转动球体并从顶部看时,这种方法的局限性就非常明显了。从这个角度看,曲线又一次出现了块状。事实证明,使用板块来构建球体只能使曲线在三个维度中的一个维度上更加平滑。用砖块或板材堆砌球体的另一个缺点是,当你看球体的底面时,砖块和板材的底面是可见的。
用板堆积而成的球体的侧视图
同一球体的顶视图
有没有一种方法可以在所有三维空间中实现更平滑的曲线,而又看不到那些讨厌的板的底部?如果我们能只取这个球体顶部比较光滑的部分,并以某种方式将其用于所有3维度(所有6个面),我们就能得到一个看起来全面光滑的球体——对吧?这正是AFOL杰出人物Bruce Lowell在2002年的想法。他的发明彻底改变了使用乐高建造圆形物体(不仅仅是球体)的方式,使他成为唯一一个以他名字命名的AFOL(我知道)的建造技巧——洛厄尔球体。
6) 洛厄尔球体
我今天要分享的最后一项技巧是洛厄尔球体。这包括一个SNOT立方体(各个方向都有螺柱),6个相同的弧形板(用乐高板搭建)连接在所有6个侧面。每块板都比它的宽度长,使得6块板子可以完美地互锁,没有任何可见的缝隙。布鲁斯·洛厄尔最初的球体直径为6.8个螺柱,它的内部核心是4x4x4螺柱宽。但在随后的几年里,这种技术已经有了自己的生命力,不仅在球体上,而且在其他复杂的雕塑中也找到了应用。
虽然最初的6.8根螺柱宽的球体很容易弄清楚,但如何应用这种技术来建造更大的球体呢?另一位AFOL是Bram Lambrecht,他是使这种技术为大家所接受的关键。他开发了Bram's Sphere Generator[4],允许你创建一个你需要的任何直径的洛厄尔球体。只要输入直径(以0.2个螺柱为增量),调整一些设置,你就可以保存一个Ldraw文件,可以导入到Stud.io。有一个选项可以使用半螺柱的偏移量(跳板)来获得更多的细节,但我发现这对较大的球体来说并不实用。
一个非常有用的设置是“使用交替的图层颜色”,选择这个选项后,构成6个相同面板的各层板将使用不同颜色。你可能想知道为什么这很有用。Ldraw文件有6个面板的子模型。但是,当你释放(解组)这些子模型之一时,你会发现每个面板完全是由1×1的板块构成的。因此,这里涉及到一些工作,逐层进行,用更大的板替换1×1的板。
你必须以这样的方式挑选板材,使整个面板作为一个单元固定在一起(通过确保板材之间的接缝不会在连续的几层之间排列)。好消息是,一旦你完成了一个板块的工作,你可以把它保存为一个子模型,并把它用于所有6个面。Ldraw文件也不包括核心部分,因此你必须把它建成一个SNOT立方体,在所有6个方向都有螺柱(通常只需为6个面板中的每一个提供少量的连接点就足够)。
完整的洛厄尔球体(直径27.2个螺柱)
截断的洛厄尔球体(用于泰姬陵穹顶)
对于泰姬陵的圆形穹顶,我创造了一个直径为27.2个螺柱的洛厄尔球体。这是由一个尺寸为16x16x16螺柱的核心和6个弧形板组成的,每个弧形板板的厚度为14板(所以直径为16螺柱+28板,相当于16+11.2=27.2螺柱)。显然,我不需要球体的底部部分,所以我不得不截断它。我最终完全删除了球体的底部面板,并将核心部分的高度减少了2个螺柱,变成14个螺柱。
我还不得不裁剪4个侧面的弧形面板的底部部分(因为面板有两种不同的方向,所以我不得不创建两个截断侧板)。坐落在圆柱上的穹顶底部部分最终的直径为16个螺柱+22个板=24.8个螺柱,这与圆柱的外径(25个螺柱)非常接近。
泰姬陵的穹顶
显示内部核心和5个弧形面板的分解图
洛厄尔球体的概念可以扩展到其他形状。Lsculpt[5]也是由Bram Lambrecht开发的,它允许你将3D模型转换成乐高雕塑,其结构很像洛厄尔球体,有一个SNOT核心(不一定是立方体),在所有3维中都有弯曲的面板。这是我用Lsculpt数字技术制作的一个心脏雕塑。
用Lsculpt制作的心脏雕塑
结尾
我所列举的技术只是冰山一角,可以这么说,还有其他一些巧妙的技巧,人们已经想出了用乐高建造圆形的更多方法。希望这篇文章能给你一个很好的启发,抛砖引玉,让你自己去探索这些技术。
你想建造什么圆形的东西?你有没有发现其他制作乐高球体的技术?请在下面的评论中留下你的想法。
文中设计到的工具地址为:
[1]https://www.plotz.co.uk/plotz-model.php?model=Sphere
[2]https://www.plotz.co.uk/plotz-model.php?model=Ellipsoid
[3]https://www.plotz.co.uk/plotz-model.php?model=Ellipsoid
[4]https://lego.bldesign.org/sphere/
[5]https://code.google.com/archive/p/lsculpt/
····· End ·····
《酷玩潮》Vol.2来了,会给你带来什么惊喜?