初中数学 | 平行四边形题目会看不会做?你需要这篇文章!

平行四边形是初中数学非常重要的考点,很多同学反馈说,平行四边形定理很多,可是一到用就不会。

所以今天我们梳理一下平行四边形的知识,还有配套练习题,帮助大家巩固所学。

一、平行四边形

1.定义:两组对边分别平行的四边形叫平行四边形。

2.平行四边形的性质

(1)平行四边形的对边平行且相等;

(2)平行四边形的邻角互补,对角相等;

(3)平行四边形的对角线互相平分。

3.平行四边形的判定

平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分。

第一类:与四边形的对边有关

(1)两组对边分别平行的四边形是平行四边形;

(2)两组对边分别相等的四边形是平行四边形;

(3)一组对边平行且相等的四边形是平行四边形。

第二类:与四边形的对角有关

两组对角分别相等的四边形是平行四边形。

第三类:与四边形的对角线有关

对角线互相平分的四边形是平行四边形。

4.常见考法

(1)利用平行四边形的性质,求角度、线段长、周长;

(2)求平行四边形某边的取值范围;

(3)考查一些综合计算问题;

(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。

二、特殊的平行四边形

1.矩形:

(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

(3)判定定理:

①有一个角是直角的平行四边形叫做矩形;

②对角线相等的平行四边形是矩形;

③有三个角是直角的四边形是矩形。

2.菱形:

(1)定义 :邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

(3)判定定理:

①一组邻边相等的平行四边形是菱形;

②对角线互相垂直的平行四边形是菱形;

③四条边相等的四边形是菱形。

(4)面积:

S菱形=1/2ab(ab为两条对角线)

3.正方形:

(1)定义:一个角是直角的菱形或邻边相等的矩形。

(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。 正方形既是矩形,又是菱形。

(3)正方形判定定理:

①对角线互相垂直平分且相等的四边形是正方形;

②一组邻边相等,一个角为直角的平行四边形是正方形;

③对角线互相垂直的矩形是正方形;

④邻边相等的矩形是正方形

⑤有一个角是直角的菱形是正方形;

⑥对角线相等的菱形是正方形。

三、例题

1.如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为   (       )

A .3        B .2√3        C .√13        D .4

答案:C

2. 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )

A .(3,1)        B .(3,4/3)

C .(3,5/3)        D .(3,2)

答案:B

3.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.

(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;

(2)当点P在线段DB上 (不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;

(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论。

  

【解析】

(1)AP=EF,AP⊥EF,理由如下:

连接AC,则AC必过点O,延长FO交AB于M;

∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,

∴四边形OECF是正方形,

∴OM=OF=OE=AM,

∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,

∴△AMO≌△FOE,

∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,

故AP=EF,且AP⊥EF.

(2)题(1)的结论仍然成立,理由如下:

延长AP交BC于N,延长FP交AB于M;

∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,

∴四边形MBEP是正方形,

∴MP=PE,∠AMP=∠FPE=90°;

又∵AB-BM=AM,BC-BE=EC=PF,且AB=BC,BM=BE,

∴AM=PF,

∴△AMP≌△FPE,

∴AP=EF,∠APM=∠FPN=∠PEF

∵∠PEF+∠PFE=90°,∠FPN=∠PEF,

∴∠FPN+∠PFE=90°,即AP⊥EF,

故AP=EF,且AP⊥EF.

(3)题(1)(2)的结论仍然成立;

如右图,延长AB交PF于H,证法与(2)完全相同

  

(0)

相关推荐