tidyr总结篇-续

欢迎来到医科研,这里是白介素2的读书笔记,跟我一起聊临床与科研的故事, 生物医学数据挖掘,R语言,TCGA、GEO数据挖掘。

tidyr总结篇 

gather(data,key="“,value=”") ## key是变量,value是值 gather的意义是重新塑造数据的变量,原有数据的变量并不是真正的变量,这时候变量不是变量,变量还是变量。

举例说明: 神奇的gather
参数1:data 参数2:key变量名,参数3:value变量名 参数4:gather的变量指定 其中-表示除外某向量,全部gather

Sys.setlocale('LC_ALL','C')
## [1] "C"
library(tidyverse)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Registered S3 method overwritten by 'rvest':
##   method            from
##   read_xml.response xml2
## -- Attaching packages -------------------------------------------- tidyverse 1.2.1 --
## <U+221A> ggplot2 3.1.0       <U+221A> purrr   0.3.0  
## <U+221A> tibble  2.0.1       <U+221A> dplyr   0.8.0.1
## <U+221A> tidyr   0.8.2       <U+221A> stringr 1.4.0  
## <U+221A> readr   1.3.1       <U+221A> forcats 0.4.0
## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
stocks <- tibble(
  time = as.Date('2009-01-01') + 0:9,
  X = rnorm(10, 0, 1),
  Y = rnorm(10, 0, 2),
  Z = rnorm(10, 0, 4)
)
stocks
## # A tibble: 10 x 4
##    time             X      Y      Z
##    <date>       <dbl>  <dbl>  <dbl>
##  1 2009-01-01 -0.497  -1.20   5.93 
##  2 2009-01-02  1.22    1.58  -4.43 
##  3 2009-01-03  1.68   -2.50   8.03 
##  4 2009-01-04  1.58    0.744 -2.00 
##  5 2009-01-05  0.775   1.87  -3.14 
##  6 2009-01-06  0.0405  0.629  4.31 
##  7 2009-01-07 -1.42   -1.36   9.63 
##  8 2009-01-08  1.18    5.21  -0.231
##  9 2009-01-09 -0.581  -1.02  -0.680
## 10 2009-01-10  0.768   0.900  6.43

gather起stocks中的,X,Y,Z. 新命名一个key,命名一个value, 除去time不变化

gather(stocks, stock, price, -time)
## # A tibble: 30 x 3
##    time       stock   price
##    <date>     <chr>   <dbl>
##  1 2009-01-01 X     -0.497 
##  2 2009-01-02 X      1.22  
##  3 2009-01-03 X      1.68  
##  4 2009-01-04 X      1.58  
##  5 2009-01-05 X      0.775 
##  6 2009-01-06 X      0.0405
##  7 2009-01-07 X     -1.42  
##  8 2009-01-08 X      1.18  
##  9 2009-01-09 X     -0.581 
## 10 2009-01-10 X      0.768 
## # ... with 20 more rows
stocks %>% gather(stock, price, -time)##保留time不变化
## # A tibble: 30 x 3
##    time       stock   price
##    <date>     <chr>   <dbl>
##  1 2009-01-01 X     -0.497 
##  2 2009-01-02 X      1.22  
##  3 2009-01-03 X      1.68  
##  4 2009-01-04 X      1.58  
##  5 2009-01-05 X      0.775 
##  6 2009-01-06 X      0.0405
##  7 2009-01-07 X     -1.42  
##  8 2009-01-08 X      1.18  
##  9 2009-01-09 X     -0.581 
## 10 2009-01-10 X      0.768 
## # ... with 20 more rows
##
mini_iris <- iris[c(1, 51, 101), ]
mini_iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
gather(mini_iris,key = "flower_att",value = "value",Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
##       Species   flower_att value
## 1      setosa Sepal.Length   5.1
## 2  versicolor Sepal.Length   7.0
## 3   virginica Sepal.Length   6.3
## 4      setosa  Sepal.Width   3.5
## 5  versicolor  Sepal.Width   3.2
## 6   virginica  Sepal.Width   3.3
## 7      setosa Petal.Length   1.4
## 8  versicolor Petal.Length   4.7
## 9   virginica Petal.Length   6.0
## 10     setosa  Petal.Width   0.2
## 11 versicolor  Petal.Width   1.4
## 12  virginica  Petal.Width   2.5
gather(mini_iris,key = "flower_att",value = "value",Sepal.Length:Petal.Width)
##       Species   flower_att value
## 1      setosa Sepal.Length   5.1
## 2  versicolor Sepal.Length   7.0
## 3   virginica Sepal.Length   6.3
## 4      setosa  Sepal.Width   3.5
## 5  versicolor  Sepal.Width   3.2
## 6   virginica  Sepal.Width   3.3
## 7      setosa Petal.Length   1.4
## 8  versicolor Petal.Length   4.7
## 9   virginica Petal.Length   6.0
## 10     setosa  Petal.Width   0.2
## 11 versicolor  Petal.Width   1.4
## 12  virginica  Petal.Width   2.5

-表示不gather的变量

gather(mini_iris,key = "flow_att",value = "value",-Species)
##       Species     flow_att value
## 1      setosa Sepal.Length   5.1
## 2  versicolor Sepal.Length   7.0
## 3   virginica Sepal.Length   6.3
## 4      setosa  Sepal.Width   3.5
## 5  versicolor  Sepal.Width   3.2
## 6   virginica  Sepal.Width   3.3
## 7      setosa Petal.Length   1.4
## 8  versicolor Petal.Length   4.7
## 9   virginica Petal.Length   6.0
## 10     setosa  Petal.Width   0.2
## 11 versicolor  Petal.Width   1.4
## 12  virginica  Petal.Width   2.5

省略掉key, value

gather(mini_iris,flow_att,value,-Species)##得到的结果相同
##       Species     flow_att value
## 1      setosa Sepal.Length   5.1
## 2  versicolor Sepal.Length   7.0
## 3   virginica Sepal.Length   6.3
## 4      setosa  Sepal.Width   3.5
## 5  versicolor  Sepal.Width   3.2
## 6   virginica  Sepal.Width   3.3
## 7      setosa Petal.Length   1.4
## 8  versicolor Petal.Length   4.7
## 9   virginica Petal.Length   6.0
## 10     setosa  Petal.Width   0.2
## 11 versicolor  Petal.Width   1.4
## 12  virginica  Petal.Width   2.5

在管道中演示一套

注意group_by与slice联用时,slice切割的是总分组的数目 如果group分了3组,那slice切割1的话 就是显示1*3,如果切割1:2的话,那就是2*3,显示6个观测

下面举例说明

展示分组中的序列1,包含3个species

注意slice与group_by的联用

library(dplyr)
mini_iris <-
  iris %>%
  group_by(Species) %>%
  slice(1)
mini_iris %>% gather(key = flower_att, value = measurement, -Species)
## # A tibble: 12 x 3
## # Groups:   Species [3]
##    Species    flower_att   measurement
##    <fct>      <chr>              <dbl>
##  1 setosa     Sepal.Length         5.1
##  2 versicolor Sepal.Length         7  
##  3 virginica  Sepal.Length         6.3
##  4 setosa     Sepal.Width          3.5
##  5 versicolor Sepal.Width          3.2
##  6 virginica  Sepal.Width          3.3
##  7 setosa     Petal.Length         1.4
##  8 versicolor Petal.Length         4.7
##  9 virginica  Petal.Length         6  
## 10 setosa     Petal.Width          0.2
## 11 versicolor Petal.Width          1.4
## 12 virginica  Petal.Width          2.5

再来举个例子 - mtcars数据集中的cyl分组为4-6-8 - 切割slice 1:2,即显示2组,4-6-8

by_cyl <- group_by(mtcars, cyl)
##
slice(by_cyl, 1:2)
## # A tibble: 6 x 11
## # Groups:   cyl [3]
##     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
## 2  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
## 3  21       6  160    110  3.9   2.62  16.5     0     1     4     4
## 4  21       6  160    110  3.9   2.88  17.0     0     1     4     4
## 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
## 6  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4

spread函数

这是一个与gather互为逆向操作的函数 函数参数有:参数1:data, 参数2:key,参数3:value,达到按key与value展开的效果

library(dplyr)
stocks <- data.frame(
  time = as.Date('2009-01-01') + 0:9,
  X = rnorm(10, 0, 1),
  Y = rnorm(10, 0, 2),
  Z = rnorm(10, 0, 4)
)
stocks
##          time          X          Y          Z
## 1  2009-01-01 -0.9981963  0.6149012  -1.880305
## 2  2009-01-02  0.9763906  1.2292060  -2.244749
## 3  2009-01-03  1.3475060 -1.6466510   4.497477
## 4  2009-01-04  0.6845907 -2.8694272 -10.145486
## 5  2009-01-05 -0.3132428  0.2366398  -1.401196
## 6  2009-01-06  1.0542915 -0.5094071   1.311380
## 7  2009-01-07 -2.5360015  1.5011045   1.188158
## 8  2009-01-08 -0.2878114  1.6744369  -3.015077
## 9  2009-01-09 -0.3004896 -2.8344579   4.376036
## 10 2009-01-10 -0.1714464  0.8319891  -2.288022

先key value, gather一下

stocksm <- stocks %>% gather(stock, price, -time)
stocksm
##          time stock       price
## 1  2009-01-01     X  -0.9981963
## 2  2009-01-02     X   0.9763906
## 3  2009-01-03     X   1.3475060
## 4  2009-01-04     X   0.6845907
## 5  2009-01-05     X  -0.3132428
## 6  2009-01-06     X   1.0542915
## 7  2009-01-07     X  -2.5360015
## 8  2009-01-08     X  -0.2878114
## 9  2009-01-09     X  -0.3004896
## 10 2009-01-10     X  -0.1714464
## 11 2009-01-01     Y   0.6149012
## 12 2009-01-02     Y   1.2292060
## 13 2009-01-03     Y  -1.6466510
## 14 2009-01-04     Y  -2.8694272
## 15 2009-01-05     Y   0.2366398
## 16 2009-01-06     Y  -0.5094071
## 17 2009-01-07     Y   1.5011045
## 18 2009-01-08     Y   1.6744369
## 19 2009-01-09     Y  -2.8344579
## 20 2009-01-10     Y   0.8319891
## 21 2009-01-01     Z  -1.8803050
## 22 2009-01-02     Z  -2.2447486
## 23 2009-01-03     Z   4.4974771
## 24 2009-01-04     Z -10.1454861
## 25 2009-01-05     Z  -1.4011960
## 26 2009-01-06     Z   1.3113796
## 27 2009-01-07     Z   1.1881581
## 28 2009-01-08     Z  -3.0150769
## 29 2009-01-09     Z   4.3760358
## 30 2009-01-10     Z  -2.2880217

spread展开数据

按stock, price展开

stocksm %>% spread(stock, price)
##          time          X          Y          Z
## 1  2009-01-01 -0.9981963  0.6149012  -1.880305
## 2  2009-01-02  0.9763906  1.2292060  -2.244749
## 3  2009-01-03  1.3475060 -1.6466510   4.497477
## 4  2009-01-04  0.6845907 -2.8694272 -10.145486
## 5  2009-01-05 -0.3132428  0.2366398  -1.401196
## 6  2009-01-06  1.0542915 -0.5094071   1.311380
## 7  2009-01-07 -2.5360015  1.5011045   1.188158
## 8  2009-01-08 -0.2878114  1.6744369  -3.015077
## 9  2009-01-09 -0.3004896 -2.8344579   4.376036
## 10 2009-01-10 -0.1714464  0.8319891  -2.288022

按time, price展开

stocksm %>% spread(time, price)
##   stock 2009-01-01 2009-01-02 2009-01-03  2009-01-04 2009-01-05 2009-01-06
## 1     X -0.9981963  0.9763906   1.347506   0.6845907 -0.3132428  1.0542915
## 2     Y  0.6149012  1.2292060  -1.646651  -2.8694272  0.2366398 -0.5094071
## 3     Z -1.8803050 -2.2447486   4.497477 -10.1454861 -1.4011960  1.3113796
##   2009-01-07 2009-01-08 2009-01-09 2009-01-10
## 1  -2.536001 -0.2878114 -0.3004896 -0.1714464
## 2   1.501104  1.6744369 -2.8344579  0.8319891
## 3   1.188158 -3.0150769  4.3760358 -2.2880217

说明一下gather-spread的互补性质

stocks
##          time          X          Y          Z
## 1  2009-01-01 -0.9981963  0.6149012  -1.880305
## 2  2009-01-02  0.9763906  1.2292060  -2.244749
## 3  2009-01-03  1.3475060 -1.6466510   4.497477
## 4  2009-01-04  0.6845907 -2.8694272 -10.145486
## 5  2009-01-05 -0.3132428  0.2366398  -1.401196
## 6  2009-01-06  1.0542915 -0.5094071   1.311380
## 7  2009-01-07 -2.5360015  1.5011045   1.188158
## 8  2009-01-08 -0.2878114  1.6744369  -3.015077
## 9  2009-01-09 -0.3004896 -2.8344579   4.376036
## 10 2009-01-10 -0.1714464  0.8319891  -2.288022
stocks %>% 
  gather(key=stock,value = price,-time) %>% ##先聚合
  spread(key = stock,value = price) %>% ## 又展开还原
  identical(stocks) ## 判断与原来的stocks是否完全一样
## [1] TRUE

总结一下 gather与spread,可以自如的将数据变换为宽数据或窄数据 gather的数据格式非常适用用于ggplot2的导入,用于可视化 说到这里了我们就绘制一下吧,当然关于可视化的内容暂时不展开讲。

牛刀小试

library(ggplot2)
p<-stocks %>% 
  gather(key = stock,value = price,-time) %>% 
  as_tibble() %>% ##直接导入到ggplot2进行可视化
  ggplot2::ggplot(aes(x=stock,y=price,fill=stock))+
    geom_boxplot()

image.png

改改颜色

p+scale_fill_brewer(palette="Dark2")

image.png

放上自己喜欢的颜色

p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))

image.png

tidyr::unite函数

能够方便的实现将多列粘贴到一起的功能 参数1:data数据框,参数2:新列名,参数3:sep分隔符,参数4:remove=T移除原列 下面举例说明,这个功能好用,但用起来比较简单

粘贴vs与am列

library(dplyr)
unite_(mtcars, "vs_am", c("vs","am"))
##                      mpg cyl  disp  hp drat    wt  qsec vs_am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46   0_1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02   0_1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61   1_1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44   1_0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02   0_0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22   1_0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84   0_0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00   1_0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90   1_0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30   1_0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90   1_0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40   0_0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60   0_0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00   0_0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98   0_0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82   0_0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42   0_0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47   1_1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52   1_1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90   1_1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01   1_0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87   0_0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30   0_0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41   0_0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05   0_0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90   1_1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70   0_1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90   1_1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50   0_1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50   0_1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60   0_1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60   1_1    4    2

粘贴再分割是可逆的操作

mtcars %>%
  unite(vs_am, vs, am) %>%
  separate(vs_am, c("vs", "am"))
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

separate函数-逆向的unite操作

参数1:data,参数2: 要拆分的列,参数3:拆分成的新变量,参数4:Sep分割模式 这个函数能做到将1列拆解为多列,用法与unite非常相似 这里不重复过多,举几个简单示例说明即可

library(dplyr)
df <- data.frame(x = c(NA, "a.b", "a.d", "b.c"))
df
##      x
## 1 <NA>
## 2  a.b
## 3  a.d
## 4  b.c

分割x为A-B

df %>% separate(x, c("A", "B"))
##      A    B
## 1 <NA> <NA>
## 2    a    b
## 3    a    d
## 4    b    c

如果你想只保留第二个变量

df %>% separate(x, c(NA, "B"))
##      B
## 1 <NA>
## 2    b
## 3    d
## 4    c

一个比较难办的问题是,如果需要裂解的列,裂解出来并不是相同的长度怎么办?separate函数提供了几个参数,extra与fill参数来控制裂解的方式 extra用于控制裂解碎片过多,warn:警告信息但扔掉多余,drop:扔掉但并不警告,merge:不扔掉,多余的merge起来 fill,warn警告但从左侧开始填充,right,右侧填充NA,left左侧填充NA

df <- data.frame(x = c("a", "a b", "a b c", NA))
df
##       x
## 1     a
## 2   a b
## 3 a b c
## 4  <NA>

这样的方式会有warning

df %>% separate(x, c("a", "b"))
## Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [3].
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [1].
##      a    b
## 1    a <NA>
## 2    a    b
## 3    a    b
## 4 <NA> <NA>

扔掉多余信息,右侧填充NA

df %>% separate(x, c("a", "b"), extra = "drop", fill = "right")
##      a    b
## 1    a <NA>
## 2    a    b
## 3    a    b
## 4 <NA> <NA>

merge多余的,并从左侧开始填充

df
##       x
## 1     a
## 2   a b
## 3 a b c
## 4  <NA>
df %>% separate(x, c("a", "b"), extra = "merge", fill = "left")
##      a    b
## 1 <NA>    a
## 2    a    b
## 3    a  b c
## 4 <NA> <NA>

同上

df <- data.frame(x = c("x: 123", "y: error: 7"))
df
##             x
## 1      x: 123
## 2 y: error: 7
df %>% separate(x, c("key", "value"), ": ", extra = "merge")
##   key    value
## 1   x      123
## 2   y error: 7


(0)

相关推荐

  • R绘图:唱一半的歌,画一半的图 gghalves

    R绘图往期回顾: R绘图:gggibbous,基于ggplot2的Moon charts R绘图:ggeconodist,基于ggplot2的另类箱图 R语言学习系列之"多变的热图" ...

  • 这回是真的!(一带一路篇续一)

    "一带一路"提出已经一年有余了,目前在印尼的发展状况如何?让我轻轻的告诉你:形势大好,不是小好,而且越来越好. 十月中旬,55亿美元的雅万铁路尘埃落定,花落中国,标志着中国制造.中 ...

  • 这回是真的!(镍产业篇续一)

    五个月前,曾经结合印尼镍产业的情况发了一篇看法,五个月后的今天,再以那篇文章的同样文体结构聊聊最新情况.先来一道心灵鸡汤补补:约么?别想歪了,介似北方方言,意思就是估计.猜测.掂量.猜想的意思.例句: ...

  • 这回是真的!(文化融合篇续一)

    不久前,本地的一张华文报纸登出一篇多年失散的兄妹寻人启事,本来是做好事,结果标题把"人"字排版排倒了,写成了"寻丫启事".幸亏找人的不是北京人,要不介事还麻烦了 ...

  • 这回是真的?(高铁篇续三)

    9月2日,在中国人民纪念抗战胜利70周年阅兵前夕,也是印尼高铁项目应该公布中标结果的日子,国人根据各种渠道得来的消息,正准备举国相庆,绝杀日本的时候,让印尼政府给闪了一把,全上来都下去,以方案不适合为 ...

  • 这回是真的?(高铁篇续二)

    印尼高铁一役,中国应该汲取哪些教训? 雅万高铁案,中国没有输,但很受伤.我们在鄙视日本政府无赖搅局.抱怨印尼政府优柔寡断的同时,自己似乎也应思考些什么. 1.中国的对外政策给世人的印象一贯是温文尔雅, ...

  • tidyr总结篇

    欢迎来到医科研,这里是白介素2的读书笔记,跟我一起聊临床与科研的故事, 生物医学数据挖掘,R语言,TCGA.GEO数据挖掘. tidyr总结篇  gather(data,key="" ...

  • 读者问答——寒气篇续

    Q:最近我放暑假,因为放假生活作息开始乱,十二点一点才睡,二三点会醒来,到六七点又醒,睡眠断断续续,中午常常要再睡一会才有精神.而我每天最少腹泻一次,以前上班紧张偶有便秘,但放假却天天腹泻,(多在早上 ...

  • 灵笼设定解析(玛娜生态篇续)

    接上文https://www.bilibili.com/read/cv3344213 第七八集更新后可以对世界背景做进一步分析.这个世界是机械灵能基因三大飞升出现后的世界. 从之前种种可得知旧世界在研 ...

  • 北牗南窗续梦篇 蒹葭苍苍

    北牗南窗续梦篇 蒹葭苍苍 七律·观经典诵读会 童音朗朗诵书声,环珮玻璃并玉钲. 诸子百家风雅颂,四书五典乐歌行. 唐诗宋韵千章句,李杜苏辛万古名. 少壮光阴须努力,传承薪火任非轻. 七律·母亲节感怀 ...