几何综合题型之最值问题解题策略
最值问题是初中数学中的一种常见题型,而利用勾股定理、轴对称等知识求图形中的最值,是近年中考的热点问题第一。对这类问题,我们应该学会分析、观察图形,从中找出解题途径。
【知识讲解】
1. 两条线段和的最小值.
(一)、已知两个定点:
1、在一条直线m上,求一点P,使PA+PB最小;
(1)点A、B在直线m两侧:
3. 其它非基本图形类线段和差最值问题
1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差.
2、在转化较难进行时需要借助于三角形的中位线及直角三角形斜边上的中线。
3、线段之和的问题往往是将各条线段串联起来,再连接首尾端点,根据两点之间线段最短以及点到线的距离垂线段最短的基本依据解决。
《初中数学典型题思路分析》,不仅是一堆猎物,也是一支猎枪.最适合数学成绩中等及中等以上学生,是大多数学生奋战区和极限区题目用书.
买书赠送特色资料:
1.《初中数学动点问题思路方法大汇总》
2.《初中数学典型超级易错题》
3.《初中数学解题思路方法大汇总》
4.《初中几何典型解题模型》
赞 (0)