数学竞赛用书推荐及书架一角

文/阳友雄【来源】老阳讲数学(许兴华数学/选编)

数学竞赛的学习过程是一个非常艰苦的过程,从刚开始的入门到最后的集中训练,不仅占取考生大量时间还有精力,最重要的还影响高考的进度复习。一份好的参考资料可以给学习数学竞赛的考生减少众多的弯路。

一、入门

首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。

1)《新编中学数学解题方法全书》,即基础衔接书。

2)《奥数教程》

经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,《培优》稍难,但很散,推荐《奥数教程》。)

二、提高

1)《奥赛小丛书》

专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。

2)《奥赛经典》

内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。

3)《命题人讲座》

适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。

其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典!

另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。

4)《数学竞赛研究教程(套装上下册)》

本书是参加数学竞赛的教练员和选手的必备用书。国内数学竞赛研究方面的权威参考书。

5)关于几何

《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。萧振纲教授的几何变换(哈工大版),有助于深化系统自己的几何基础。

6)关于组合

推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。

三、实战

1)《中等数学》专业的竞赛书籍,有各种讲座和每年国内外试题详细解析

2)《高中数学联赛备考手册》

这本书当然不能错过。各省预赛试题集锦。

3)高中数学竞赛专题讲座

浙大小红本。

4)《走向IMO》

收集国内最高层次数学竞赛试题和国外数学奥林匹克试题,难度非常大。需注意千万不要陷于题目中,题目背后的思想方法往往更精彩、更有益。

5)历届CMO/IMO试题集

当然,准备联赛实战的同学还有很多参考书,例如《奥数精讲与测试》、《备考手册》、《几何瑰宝:平面几何500名题暨1000条定理》和《世界著名平面几何经典著作钩沉》等等;俄罗斯(苏联)的赛题也是很好的素材,其中的组合题适合不限年级的随时思考选用……

四、保送后推荐看

1)首先是数学奥赛辅导丛书,分为第一辑,第二辑,现在紧随其后的叫数林外传,中科大出版。永恒的经典,是提高数学修养的好书,可以珍藏一生。

2)其次是数学小丛书,不是数学奥林匹克小丛书。数学小丛书是有华罗庚等数学大家写的,认真阅读受益终生。

3)数学专著:几何原本,希尔伯特几何基础,高斯算数探索等。外语水平好的建议看原著,水平稍差的中外对照着看。专著有助于真正提高水平,是成为大师的必由之路一。

4)在阅读数学名著,光看不动手做是不行的。推荐数学分析习题集:吉米多维奇,还有北大的习题集。其他基础可本人不是很了解。

5)数学基础课:数学分析推荐中科大常庚哲史济怀的数学分析教程,个人认为很适合学静思的同学使用。其他基础课国内的我不很了解,外文的倒可推荐几个系列。

6)图灵数学系列,数学名著译丛,华章数学译丛,法兰西精品译丛。

可能很多学竞赛的对这些基础课不屑一顾,但须知这些才是长远的。一味迷恋初等数学的技巧,忽视高等数学的重要性是难以走远,取得好的发展的。许多人说国内拿金牌的为什么获不了WOLF,菲尔茨奖,我想原因就在此。其实很多竞赛的好题都取材于高等数学,多看长长见识是有好处的。

当学习过程中的第一知识来源几乎不再为你注入源头活水的时候,你自然明白,书本就成了你获取知识的唯一可行途径。你看什么书,它知识点讲解是否清楚,它囊括的练习题是否典型而具有启发性,就直接决定了你的学习质量,其重要性无需我再多言。

Period 1:初三毕业的那个夏天——高一的第一个学期结束

第一阶段是大多数竞赛生学习必备知识的阶段,说白了就是先把高考课程内要求掌握的所有知识自学完成,吃饱了上路。这一阶段的目标,清晰明确:配合老师的课堂教学,尽可能快地自学完成高考数学的绝大多数内容, 在最短时间内达到高考的要求。

Period 2:高一第一学期结束的寒假

第二阶段是竞赛生第一次真正意义上地开始竞赛的学习,是飞机起飞前的第一冲刺滑行阶段。我建议你需要完成的事情是:学习一试的内容和平面几何的内容。

对于一试部分的内容,我推荐的教材是华东师范大学出版社出版的《奥数教程》 ,注意是高一年级和高二年级的基础篇 (只有基础篇) 。学数学竞赛的人不可能没听说这一套书,   这一系列共分三本,分别在封面注明了高一到高三三个年级。高一的这一本包括的知识点有:集合、函数、数列、三角函数、向量和立体几何,除了集合包含一定的组合知识,其他的内容均为一试内容(可能还包括一  点二试的代数内容) ,题目非常典型且有难度,不管是基础篇还是提高篇都是必须刷完的;高二这本书基础篇包括:一试难度的不等式,解析几何和复数,提高篇基本就是二试内容了,不推荐在这个  阶段完成。

平面几何的内容,我推荐两本书,: 《奥赛经典——奥林匹克数学中的几何问题》   ,主要由沈文选老师编写,湖南师范大学出版社出版。请你无视第二篇和第三篇关于立体几何和解析几何的内容,重点在第一篇。除了三四五六七章(从托勒密到九点圆)可以略看,不是考察重点,其他都要认真看。这本书的精华就在每一章节的基础知识部分,严密细致的总结归纳,堪称平面几何教科书的典范。另外这本书上的题目难度分级也很合理,不是一味的难或者水,刷的时候可以明显感觉到能力的提升。一个小的不足是错误较多。还有萧振纲教授的几何变换(哈工大版),是大部头,包罗万象,值得一看。

关于这一阶段的学习,还要多啰嗦几句。第一, 两条线要穿插着进行,尤其是一试内容的学习, 不仅是在这一阶段,在以后的过程中,都要保证常规的最低训练量;第二,这个阶段以及第三阶段,都是新知识学习的阶段,你的目标很明确:快速地把这个圈子摸一遍。所以对于部分难题,该放的果断放,必须保证一定的学习速度,但同时要保证质量,走马观花同样是大忌。

Period 3: 高一第二学期开始到高一结束后暑假的中期

第三阶段是你一试实力进一步提升的阶段,同时也是你开始接触二试部分较难知识(数论、组合)的时期。一试在第二阶段已经说过,在第三阶段你要持续看那两本书。

二试还有三块重要的内容你需要接触:代数、数论和组合。

代数方面,和刷什么书相比更重要的事情是,先说清楚一个未公开的公认事实:代数不一定考,要考也只能是不等式或者数列函数等和一试紧密联系的部分。明面上代数的内容包括不等式、多项 式、所有函数、数列、复数等内容,但实际上你需要真的把它当作二试内容来训练的,就只有不等 式。不等式的内容,推荐高二年级的《奥数教程》提高篇不等式的部分,难度适中,没有什么特别的亮点,但是入门已经足够了。(在这个阶段,不等式也不是你的准备重点)

数论方面,我推荐必读书有两本:  《奥数教程》高三年级里面的数论部分(第 6-10 讲以及第  19、20 讲),还有《数学奥林匹克小丛书高中卷   10 数论》,两本书均由余红兵老师编写。说起余老师, 他绝对算得上是数学竞赛界数论这一块数一数二的老师,他编写的教材精致而有深度,这两本书是不得不刷的。《奥数教程》这一本,题目简单基础,非常适合入门阅读。它的闪亮之处,在于余老师给知识点和问题分析写下的注解,一步步引导你思考和挖掘问题,这是竞赛书籍里绝无仅有的,值 得你一个一个字地细看深思。而小丛书那一本,就已经具有一定的难度了,题目非常典型和深刻, 属于进阶的数论书,适合在入门后阅读。

组合方面,在这个阶段我推荐的书是《数学奥林匹克小丛书高中卷  11 组合数学》,由张垚老师编著。除了母函数这一节可以略看,其他几章章章都堪称精华,难度梯度设置合理,知识覆盖全面,题目典型而有深度,解答细致易懂。即便是入门书籍,它也已经具有了相当的难度,能真正看好这本书,全国联赛的组合基础题肯定是不在话下的。

最后多说一句,组合和数论是二试内容中较难的两块,尤其是组合千变万化,思维性稍欠缺一点的同学会觉得很难上手。如果你在看书的时候觉得很吃力,一定要把速度降下来。

Period 4:高一结束暑假的中后期——高二开学不久的数学联赛

第二、三阶段都是竞赛内容全面铺开、构建知识网络的时期,是你储备知识,提高水平的发酵期,那么现在就是验收成果的时候了,你直面的就是数学联赛。你在这一阶段会经历一个大爆发的过程,你这一步究竟飞得有多高,直接取决于你前两个阶段准备得怎样。

这一阶段,我不再推荐新的书,你可以把前两个阶段没有刷完的书继续跟进。但是有一本刊物:《中等数学》 ,它每年到了暑假就会发行几本增刊, 有一本收集了上一年全国乃至全世界各地的考题,有一本就是各省的竞赛名师专门为联赛命制的模拟题,后者是你准备联赛的利器。这本增刊一般都包括十几套模拟题,其中每一套你都要当作模拟考试一样限时完成,书写过程然后阅卷。需要注意的是,不同的老师有不同的喜好,命制的模拟题风格各异。

最后补充几句话,这一阶段通过练习联赛模拟题,预期的效果当然把你前期的积累转化为联赛的分数,说白了就是找找联赛的感觉。除此之外,你的一试还会有很大的提升或者巩固,所以你务必把你的一试错题整理收集,一定要保证所有的一试题是以下几种情况:正确完成;算错了的重新计算;不会的看过解答,弄明白了。另一方面,你的二试不会有硬实力的提高,所以如果你遇到了一些看不太明白的二试题,就让它去吧。

Period 5:高二联赛结束——高二结束暑假的前中期

高二的联赛是一个分水岭。如果你的竞赛目标是强省的省队,国赛金牌,集训队甚至更远,下面的推荐适合你。如果你的目标没有这么远,剩下的内容你可以完全忽略,前几个阶段的事情,你大可放慢速度。情况就是这样:我之前的推荐那些书,真正看好,就已经能够达到弱省省队和强省省一等奖的层次。

高二联赛的准备,你的一试、平面几何基本达到了联赛要求,这两块也不会是你高二这一年的准备重点,你的重心需要转移到剩下的三个内容上来,尤其是数论和组合。

先说任务量稍轻的一块吧。关于代数,尽管多项式的内容在近几年的各类大型考试中几乎销声匿迹,但是你也要提防,我的建议是刷完余红兵老师的《奥数教程》高三年级多项式部分即可。关于不等式,如果你想要练,建议是《数学奥林匹克小丛书高中卷 5 不等式的解题方法和技巧》 ,由苏勇和熊斌两位老师合著。之前说过的《奥数教程》高二年级的部分主要是针对重要的不等式,这一本书则是针对不等式的技巧方法,全面细致。

以上关于代数部分的建议,你根据自己的情况适当调整, 不想刷也没关系,但是以下关于数论和组合的部分是必看的。

数论方面,只需做好一本书,不用再看其他的书,就可以达到冬令营的难度要求,甚至走得更远。这本书就是《数学奥林匹克命题人讲——初等数论》 ,由冯志刚编写,上海科技教育出版社出版。这本书知识讲解几乎可以忽略,远没有余老师的书出色,但是这本书涵盖了大量的习题,简直就是数论这一块的黄金题库,  题目的质量实在是太高  (大多数都是很难的, 尤其是第一章难度最高)  ,一道道刷过来,数论的能力会有质的飞越。

组合方面,我推荐三本书,推荐首先阅读第一本:《奥赛经典——奥林匹克数学中的组合问题》,这是组合这一块综合性的大百科全书,除了第一二章可以略看,后五章要认真刷完,题量大,题目质量很高,对于组合能力的提升要很大的帮助。剩下的两本书,你可以根据需要选择其中一本刷。

两本书是《数学奥林匹克小丛书高中卷  13 组合极值》以及《高中数学竞赛专题讲座——组合构造》  ,都是由冯跃峰老师编著。上面收集的问题同样很精彩,尤其是后者,难度很大,有能力可以两本都刷,组合多练一些绝对错不了。

最后一个建议是,如果你平时有机会进行一些模拟考试,推荐这一阶段不要考联赛模拟题,难 度要上升,需要尝试去考 CMO,美国数学奥林匹克竞赛,有能力甚至可以去试试国家集训队测试、国家队选拔、罗马尼亚大师杯和    IMO(在《走向  IMO》系列丛书中都有收录)  。如果说高二的联赛你是够着去考的话,高三这一年你需要以俯视的姿态回归。有意的拔高难度,才能够做到在联赛的考试中游刃有余。

Period 6:高二结束暑假的后期——高三联赛

这一阶段,是你在一系列拔高练习之后的回归期。这一阶段你要做好两件事。

首先,把你之前刷过的所有书都要过一遍,作为复习。这一个习惯很重要,而且很多人都没有这个习惯。第一遍看书时难免走得坑坑洼洼,有些题压根没看,有些题当时没看懂,现在是时候回过头来料理它们的时候了。你现在可以从一个更高的观点,去审视原来的问题,想想这道题是怎么来的?它的背后蕴藏了什么东西?这类技巧还经常在哪些题中出现?当时我为什么没有做出来

一切有意义、有价值的问题,你都可以去思考,然后把你的感悟记下来,这就是总结,它可以帮助你完善知识网络,加深印象,更重要的是它能够帮助你形成解题的经验。另外一个好处就是,当你发现当年把你虐得死去活来的问题不过就那么回事的时候,心情真是倍儿爽。

其次,高二暑假出来的那一本《中等数学》的增刊你需要完成,这一点无需我多说,你已经明白。

Period 7:高三联赛结束——中国数学奥林匹克竞赛(又称国赛、冬令营、 CMO)

如果你考进了省代表队,并且有资格参加国赛,那你的数学竞赛之路还能继续往前走。联赛结束到国赛开始,还有一段时间,在这个阶段,你需要刷的是三本书。其中两本是《数学竞赛研究教程》的上下册,还有一本就是《奥数教程学习手册》高三年级,在解答部分结束之后有两个专题: 组合问题和数论问题,上面收集的题目和所做的注解非常棒。

除了书之外,你还需要拔高难度去练习一些国家集训队测试、国家队选拔、美赛、罗马尼亚大师杯、 IMO 等试题,在《走向  IMO 》系列丛书中都有收录。

如果你在国赛当中取得了不错的成绩,升学问题就不用担心了,我分享的经验也就到此结束。最后我想总结几点,作为提醒送给你: 竞赛书在精不在多,很多时候一本书就足够练好一大块内容,一本书刷好了就可以有惊艳的表现。水平上不来,不是因为你书刷得不够,而是你刷得不好。

竞赛书不能光看,一定要自己动笔练习。很多人习惯非常不好,只看不做,很多问题的解答非常精彩,你直接去阅读和你先动笔试试再去看,收获的东西是不在一个数量级上的。看书的时候要养成动笔记录想法、观点的习惯。我见过身边很多人看完的书干净得像没看过一样,做出来了的打个勾,没做出来的画个圈,仅此而已。这是很糟糕的习惯。刷题时一定要记录一切有价值,有意义的东西,可以是不同于解答的新解法,可以是你的思考和感悟,也可以是你的困惑,总之一切你认为的闪光点,都值得记录。

切忌走马观花,但也不能在一个角落过分纠结。这是两种极端,有些人看书飘得很高,这样的人其实什么都学不到,最后注定死得很惨。但也有些人看书过分追求完美,总觉得我要无死角扫平这本书,但这是不可能的,有些难题和偏题,适当跳过也是必须的。

要有书看多遍的习惯,这个之前也提过。一本书看第二遍的时候,整个人的感觉都会不一样,觉得自己就像处在另外一个境界,很多问题一下就豁然开朗,这样的体验非常奇妙,而且能够给你带来实质性的帮助——经验式解题的形成,对于稳定联赛成绩,避免极端情况的发生,它具有关键性的作用。

最后,祝所有参赛考生考出好成绩。

(0)

相关推荐

  • 初中数学竞赛大纲

    全国初中数学联合竞赛题目结构.考试大纲 基本结构: 一试(共70分) 选择6题,填空4题(每题7分)考察点为代数.几何.数论. (代数.几何.数论的组合,一般选填压轴) 归纳知识点(主要内容): 1. ...

  • 数竞教师妈妈:亲学生给亲学生的答疑解惑(三)

    我是苔米数学 一枚家有小学生的名校高中老师 公众号记录高中数学解题思想方法兼陪娃学感悟 扫码二维码,关注我! 写在前面: 大乐是个特别认真的数竞生,每次遇到自己想不出来的题总是会过来请教老师.星期二, ...

  • 数学名师精心推荐:五年级下册第六单元卷,题型丰富,易错题较多

    今天,胡老师给大家分享的试题是人教版小学五年级数学下册第六单元测试卷,这份试题题目新颖,题型多样,侧重基础知识的考查,值得大家收藏起来练一练,试题如下: 本试题共有七大题,试题难易程度适中,适合不同层 ...

  • 2020普林斯顿数学竞赛 (PUMAC) 团体赛 中文翻译

    这个考试本应于2020年12月初举办,由于疫情推迟至2021年3月进行. 团体赛 1.求最大的正整数 , 使得我们至少需要 个 的小方块, 才能覆盖一个 的方格表.(可以重复) 2.智多星在学习摊煎饼 ...

  • 2020普林斯顿数学竞赛 (PUMAC) 个人赛决赛 中文翻译

    这个考试本应于2020年12月初举办,由于疫情推迟至2021年3月进行. A组 1.实数列的首项,且满足. 求证: . 2.海伦有一个木制的矩形(尺寸未知),一把直尺(没有刻度)和一支笔. 她能否构造 ...

  • 初中数学竞赛训练题(085)

    初中数学竞赛训练题专集 初中数学竞赛训练题(001)      初中数学竞赛训练题(002) 初中数学竞赛训练题(003)      初中数学竞赛训练题(004) 初中数学竞赛训练题(005)    ...

  • 王子龙,张云华——初中数学竞赛训练题(084)第1题解答

    [会议日程安排]第一届高中数学强基教学研讨会举办在即 浙大优培专集 [往届活动回顾]第一届高中数学奥林匹克教练研习班(文末回复关键词提取课程讲义) [会议资料]边红平老师手写稿:首届高中奥数(文末回复 ...

  • 初中数学竞赛训练题(086)

    初中数学竞赛训练题(086)

  • 陈迁,陈鸿飞——初中数学竞赛训练题(087)

    [会议日程安排]第一届高中数学强基教学研讨会举办在即 初中数学竞赛训练题专集 初中数学竞赛训练题(001)      初中数学竞赛训练题(002) 初中数学竞赛训练题(003)      初中数学竞赛 ...

  • 初中数学竞赛:梅涅劳斯定理

    经常做竞赛题的同学,看到这道题之后可能一下子就看出来了,第一小题就是梅涅劳斯定理,如果你不知道这是啥玩意儿,那么接下来就认真阅读,并且牢记第一小题这个结论: 解析: (1)梅涅劳斯定理的定义,简单点说 ...

  • 陈迁,陈鸿飞——初中数学竞赛训练题(088)

    初中数学竞赛训练题专集 初中数学竞赛训练题(001)      初中数学竞赛训练题(002) 初中数学竞赛训练题(003)      初中数学竞赛训练题(004) 初中数学竞赛训练题(005)    ...