九大数据分析方法之:周期性分析法 | 人人都是产品经理

编辑导读:做数据分析,有常用的九种方法,这是每一个数据分析师都必须掌握的基础知识。本文主要分析周期性分析法,它是新人们避免犯小白错误的最好方法,一起来看看吧。

大家好,我是爱学习的小xiong熊妹。

有小伙伴问:能不能系统介绍下数据分析方法。今天它来啦!数据分析常用的方法有九种,今天先介绍第一种,操作上最简单的:周期性分析法。它是新人们避免犯小白错误的最好方法。

做数据的新人最容易犯啥错?当然是一张嘴就被大家笑话:连这个常识都没有!

所谓的常识,很大一部分是周期性变化:到了这个时间,就会出这种事。周期性分析,主要是从日常杂乱的数据中,发现会周期性出现的规律,从而避免上述问题。常见的周期包括两种:自然周期/生命周期。

所谓自然周期,是指业务指标随着时间自然发生波动,比如上边吐槽的“2月份业绩自然少”,这是因为2月份过年,大家都放假了,业绩肯定少呀。

类似地:

  • 吃喝玩乐类的消费,一般周六、周日比较多,这时候才有空出来玩。

  • 企业间交易,一般工作日高,周末很低。大家都放假了谁还办公呀。

  • 雪糕冰棍冰淇淋类商品,一般夏季是旺季,冬季是淡季

  • 帽子手套暖手宝类商品,一般冬季是旺季,夏季是淡季

这些是比较直观的例子。需要注意的是,所谓的自然周期,对不同业务而言是不一样的,切不可混为一谈哦。

但是很多时候,自然周期表现并不直观,隐藏在日常起起伏伏的数据里。这时候就需要我们手动发现周期规律。比如比如一个公众号的阅读人数走势,可能如下图

一眼看过去,是不是弯弯曲曲,毫无规律可言?

这就需要手动做区分。为了更好的区分,一般取6个月的,每日的数据。因为六个月的时间,一般能涵盖2个季度,能观察出季节性变化。

同时,每日数据,能观察出每周是否有规律和每月是否有规律。不过上边例子只给个2个月的数据,那就凑合着用。

从上例蜿蜒起伏的波折里可以直接看出:没有明显的月规律。一般有月规律的数据会如下图所示(如下图)因此可以进一步观察,是否有周规律。

想看周规律,需要把数据做一下处理(如下图),把6个完整周的数据,从周一到周日对齐。之后做折线图,更容易观察出周规律。

处理过以后,可以看出:却有周规律变化,表现为:周一至周六逐步降低,周日反弹。如果把每周一到周日的数据做平均数,就能画出周规律曲线(如下图)

这里有很多明显不符合走势的点。这很正常,因为公众号发文也是有分类的,如果是卖东西的文章阅读就很低,派福利、抽奖类的阅读就高一点,搞标题党的《震惊!》《大厂!》《字jie!》的阅读就很高。所以除了日期,也和文章类型有关。

周期性分析,主要目的是做出一个参考曲线,为进一步判断提供依据。进而避免:“为啥周六阅读那么低呀!”这种低级小白问题。之后再结合内容标签,做进一步的分析。

比如上例中,第三周周一、周二是明显异常点。如果没有做标签,就会直接报警:“本周连续2天异常!请注意!”但是做了标签,如果发现周一发了卖货文(原本就该低)周二则是标题党(原本就该高)则不需要大惊小怪了。

还有一种周期是生命周期走势。比如一个活动上线,刚上线的时候肯定参与人很多,之后感兴趣的都参与过了,不感兴趣的都不参与了,因此人越来越少。这样就会出现如下图的走势。

注意:要发现生命周期走势,统计数据,是从一个业务开始的时候进行统计的,之后往后数:第1天/第2天/第3天……或者第1个月/第2个月/第3个月

生命周期走势有很多经典的运用。比如一款新商品上市,其销量和上市时间,经常有如下关系,因此被称为“商品生命周期”。类似的,还有“APP生命周期”“用户生命周期”的说法,都是一个时间轴+指标走势组合出来的。后续有机会再跟小伙伴们一一分享。

以上就是今天的分享。周期性分析看起来很简单,因为它主要是用来做参考线的,为后续各种分析方法铺路。很多复杂的分析,比如数据监控模型、数据预警模型、数据驱动决策,也是以周期性曲线为参照,所以小伙伴们先掌握基础方法,再循序渐进哦。今天的分享就到这里,谢谢大家。

作者:码工小熊,微信公众号:码工小熊

本文由 @码工小熊 原创发布于人人都是产品经理。

题图来自 Unsplash,基于CC0协议

(0)

相关推荐

  • 数据分析思维及其意义

    黎伟斌(德策) 阿里技术 一 数据分析的意义 Google的数字营销传播者Avinash Kaushik曾说"All data in aggregate is crap",即&qu ...

  • 职场数据分析,世界500强的数据分析师如何做数据分析?

    随着大数据技术的快速发展,人们对数据的价值越来越重视,数据采集.存储.安全技术也变得日益重要,数据分析技术得到了日益广泛的应用. 利用数据分析技术从海量数据中提取的信息具有极高的价值,例如,支持企业高 ...

  • 浅针对服装实体零售店供应链数据分析模型

    随着电子商务市场逐渐发展成熟,网店引流成本逐年上涨,实体店近期又重回消费者视野,但是库存积压依然是困扰服装行业多年的难题,目前仍然未能完全解决. 本文选取了一家实体零售店面抽取销售和库存数据,运用数据 ...

  • 智能相册AI化的“道与法” | 人人都是产品经理

    编辑导读:手机里的相片越来越多,很多人会习惯把它们存在网上,因此出现了很多智能相册产品.本文从相册本身这个产物去探讨其背后的底层逻辑,探寻相册这个现象背后的道与法,希望对你有帮助. 引言:今天要谈的这 ...

  • 一文读懂业务数据的分析思路 | 人人都是产品经理

    编辑导语:在业务数据分析中,新人常常会面临这样一个尴尬的处境:明明掌握了数据分析工具,但对于数据仍无从下手,发现不了其中的业务问题.其实,这是缺乏数据分析思维的表现,作者介绍了一些基础的数据分析思路, ...

  • 九大数据分析方法之:标签分析法

    编辑导语:有时候,我们想要找出两个指标之间的相关关系,虽然可以用相关分析法,但是很多时候不能用指标表达出来.那么,这些该怎么分析呢?作者介绍了标签分析法,帮助我们更好地将产生的变化用数据指标表达出来. ...

  • 【数据分析思维】数据分析中预测分析应该怎么做? | 人人都是产品经理

    编辑导语:在各行业各领域,只要有核心的业务指标,都要预测核心业绩未来的走势,销售,市场营销,运营,财务等.一方面可以对未来的发展趋势有个大致的掌握,另一方面也可以提前规划,设定各下属部门的KPI,以便 ...

  • 产品经理必备14大效率工具 | 人人都是产品经理

    作为一名互联网产品经理,在创造一款产品时,从了解需求.验证需求.做原型.评审到写PRD.跟进开发.测试--面对这漫长复杂的工作流,必须要使用一些工具软件辅助自己的工作,比方说思维导图.文档写作.原型设 ...

  • 你看不懂的纸片人,藏着大生意 | 人人都是产品经理

    编辑导读:前段时间,#13岁少女花70万约稿#事件冲上微博热搜.设圈,又一个小众圈子出现在大众视野.不少人都为之震惊,直呼看不懂这操作.一个小小的纸片人,为什么能价值数万?这一代年轻人,在你看不到的小 ...

  • 竞品分析:爱奇艺、优酷视频、腾讯视频VIP体系 | 人人都是产品经理

    视频网站的VIP业务正处于上升阶段,在此背景下,本文作者选取了爱奇艺.优酷视频.腾讯视频这三款主流产品,对它们的VIP体系进行比较. 一. 调研背景和目的 1.调研背景 截止到2018年第一季度,爱奇 ...

  • 战略:TO B 产品如何做用户分析(2) | 人人都是产品经理

    编辑导语:B端产品的用户一般都是以企业为主的客户,对于产品有更多关于使用和管理的需求,所以在做B端产品时,需要进行相关的企业用户分析,确保找对研发方向:本文作者分享了关于TO B 产品如何做用户分析的 ...

  • 构建用户画像的流程与方法 | 人人都是产品经理

    编辑导读:用户画像是指根据用户的基本属性.用户偏好.生活习惯.用户行为等信息而抽象出来的标签化用户模型.本文从什么是用户画像.用户画像的作用以及如何做用户画像展现了详细的说明,希望能给你带来启发. 前 ...