基因编辑技术简介与原理
基因编辑技术为经典和常用的分子生物学技术,在药物研发、基因治疗、基础研究、诊断技术开发等方面广泛应用。对于小分子药物研发,基因编辑可以通过基因敲入、基因敲除、碱基转换、染色重排,顺利解决上述临床前评价体系、新靶点发现、耐药性问题。
基因编辑技术的核心是通过程序化的人工核酸酶,定点对基因组DNA进行改造。到目前为止,总共有3款基因编辑技术实现了应用,第一代锌指核酸酶 (zinc-finger nuclease, ZFN)技术、第二代转录激活因子样效应物核酸酶(transcription activator-like effector nuclease, TALEN)技术、第三代CRISPR/Cas9 技术,在药物研发、基因疗法、细胞疗法方面应用广泛[3](基因编辑技术的原理及其在癌症研究中的应用),如图2所示。
![](http://n4.ikafan.com/assetsj/blank.gif)
![](http://n4.ikafan.com/assetsj/blank.gif)
图2. ZEN,TALEN,CRISPR基因编辑原理
三代基因编辑技术各有优劣势,ZFN技术易脱靶、效率低、时间周期长;TALEN技术通量小、难以做到多基因敲除,都极大的限制了技术的应用,而第三代技术兼备通量、技术壁垒降低、成本时间耗用少优势,得到大规模应用和推广,更是获得了2020年诺贝尔化学奖,本文将以第三代CRISPR/Cas9基因编辑技术为例,详细介绍其在小分子药物研发中的应用,如表1所示。
![](http://n4.ikafan.com/assetsj/blank.gif)
表1. 三种基因编辑技术优劣势比较
赞 (0)