数据结构与算法—二叉排序树详解
前言
前面介绍学习的大多是线性表相关的内容,把指针搞懂后其实也没有什么难度。规则相对是简单的。
再数据结构中树、图才是数据结构标志性产物,(线性表大多都现成api可以使用),因为树的难度相比线性表大一些并且树的拓展性很强,你所知道的树、二叉树、二叉排序树,AVL树,线索二叉树、红黑树、B数、线段树等等高级数据结构。然而二叉排序树是所有的基础,所以彻底搞懂二叉排序树也是非常重要的。
树
参考王道数据结构
二叉树也是树的一种,而二叉排序树又是二叉树的一种。
- 树是递归的,将树的任何一个节点以及节点下的节点都能组合成一个新的树。并且很多操作基于递归完成。
- 根节点: 最上面的那个节点(root),根节点没有前驱节点,只有子节点(0个或多个都可以)
- 层数: 一般认为根节点是第1层(有的也说第0层)。而树的高度就是层数最高(上图层数开始为1)节点的层数
- 节点关系: 父节点:就是链接该节点的上一层节点,孩子节点:和父节点对应,上下关系。而祖先节点是父节点的父节点(或者祖先)节点。兄弟节点:拥有同一个父节点的节点们!
- 度: 节点的度就是节点拥有孩子节点的个数(是孩子不是子孙).而树的度(最大)节点的度。同时,如果度大于0就成为分支节点,度等于0就成为叶子节点(没有子孙)。
相关性质:
- 树的节点数=所有节点度数 1.
- 度为m的树第i层最多有mi-1个节点。(i>=1)
- 高度而h的m叉树最多(mh-1)/(m-1)个节点(等比数列求和)
- n个节点的m叉树最小高度[logm(n(m-1) 1)]
二叉树
二叉树是一树的一种,但应用比较多,所以需要深入学习。二叉树的每个节点最多只有两个节点。
二叉树与度为2的树的区别:
- 一:度为2的的树必须有三个节点以上,二叉树可以为空。
- 二:二叉树的度不一定为2:比如说斜树。
- 三:二叉树有左右节点区分,而度为2的树没有左右节点的区分。
几种特殊二叉树:
- 满二叉树。高度为n的满二叉树有2n-1个节点
- 完全二叉树:上面一层全部满,最下一层从左到右顺序排列
- 二叉排序树:树按照一定规则插入排序(本文详解)。
- 平衡二叉树:树上任意节点左子树和右子树深度差距不超过1.
二叉树性质:
相比树,二叉树的性质就是树的性质更加具体化。
- 非空二叉树叶子节点数=度为2的节点树 1.本来一个节点如果度为1.那么一直延续就一个叶子,但如果出现一个度为2除了延续原来的一个节点,会多出一个节点需要维系。所以到最后会多出一个叶子。
- 非空第i层最多有2i-1个节点。
- 高为h的树最多有2h-1个节点(等比求和)。
- 完全二叉树若从左往右,从上到下编号如图:
二叉排序(搜索)树
概念
前面铺垫那么多,咱们言归正传,详细实现一个二叉排序树。首先要了解二叉排序树的规则:
- 从任意节点开始,节点左侧节点值总比节点右侧值要小。
- 例如。一个二叉排序树依次插入15,6,23,7,4,71,5,50会形成下图顺序
构造
首先二叉排序树是由若干节点构成。
- 对于node需要这些属性:left,right,和value。其中left和right是左右指针,而value是储存的数据,这里用int 类型。
node类构造为:
既然节点构造好了,那么就需要节点等其他信息构造成树。有了链表构造经验,很容易得知一棵树最主要的还是root根节点。
所以树的构造为:
public class BinarySortTree {node root;//根public BinarySortTree(){root=null;}public void makeEmpty()//变空{root=null;}public boolean isEmpty()//查看是否为空{return root==null;}//各种方法}
主要方法
- 既然已经构造号一棵树,那么就需要实现主要的方法。因为二叉排序树中每个节点都能看作一棵树。所以我们创建方法的是时候加上节点参数(也就是函数对每一个节点都能有效)
findmax(),findmin()
findmin()找到最小节点:
- 因为所有节点的最小都是往左插入,所以只需要找到最左侧的返回即可。
findmax()找到最大节点:
- 因为所有节点大的都是往右面插入,所以只需要找到最右侧的返回即可。
- 代码使用递归函数
isContains(int x)
这里的意思是查找二叉查找树中是否存在x。
- 假设我们我们插入x,那么如果存在x我们一定会在查找插入路径的过程中遇到x。因为你可以如果已经存在的点,再它的前方会走一次和它相同的步骤。也就是说前面固定,我来1w次x,那么x都会到达这个位置。那么我们直接进行查找比较即可!
public boolean isContains(int x)//是否存在{node current=root;if(root==null) {return false;}while(current.value!=x&¤t!=null) {if(x<current.value) {current=current.left;}if(x>current.value) {current=current.right;}if(current==null) {return false;}//在里面判断如果超直接返回}//如果在这个位置判断是否为空会导致current.value不存在报错 if(current.value==x) {return true;}return false;}
insert(int x)
插入的思想和前面isContains类似。找到自己的位置(空位置)插入。但是又不太一样。你可能会疑问为什么不直接找到最后一个空,然后将current赋值过去current=new node(x)。这样的化current就相当于指向一个new node(x)节点。和树就脱离关系,所以要提前判定是否为空,若为空将它的left或者right赋值即可。
- 比如说上面结构插入51
delete(int x)
删除操作算是一个相对较难理解的操作了。
删除节点规则:
- 先找到这个点。这个点用这个点的子树可以补上的点填充该点,然后在以这个点为头删除替代的子节点(调用递归)然后在添加到最后情况(只有一个分支,等等)。
- 首先要找到移除的位置,然后移除的那个点分类讨论,如果有两个儿子,就选右边儿子的最左侧那个点替代,然后再子树删除替代的那个点。如果是一个节点,判断是左空还是右空,将这个点指向不空的那个。不空的那个就替代了这个节点。入股左右都是空,那么他自己变空null就删除了。
删除的节点没有子孙:
- 这种情况不需要考虑,直接删除即可。(途中红色点)。另节点=null即可。
左节点为空、右节点为空:
- 此种情况也很容易,直接将删除点的子节点放到被删除位置即可。
左右节点均不空
- 这种情况相对是复杂的。因为这涉及到一个策略问题。
- 如果拿19或者71节点填补。虽然可以保证部分侧大于小于该节点,但是会引起合并的混乱.比如你若用71替代23节点。那么你需要考虑三个节点(19,50,75)之间如何处理,还要考虑他们是否满,是否有子女。这是个极其复杂的过程。
- 首先,我们要分析我们要的这个点的属性:能够继承被删除点的所有属性。如果取左侧节点(例如17)那么首先能满足所有右侧节点都比他大(右侧比左侧大)。那么就要再这边选一个最大的点让左半枝都比它小。我们分析左支最大的点一定是子树最右侧!
- 如果这个节点是最底层我们很好考虑,可以直接替换值,然后将最底层的点删除即可。但是如果这个节点有左枝。我们该怎么办?
- 这个分析起来也不难,用递归的思想啊。我们删除这个节点,用可以满足的节点替换了。会产生什么样的后果?
- 多出个用过的19节点,转化一下,在左子树中删除19的点!那么这个问题又转化为删除节点的问题,查找左子树中有没有能够替代19这个点的。
所以整个删除算法流程为:
代码为
public node remove(int x, node t)// 删除节点{if (t == null) {return null;}if (x < t.value) {t.left = remove(x, t.left);} else if (x > t.value) {t.right = remove(x, t.right);} else if (t.left != null && t.right != null)// 左右节点均不空{t.value = findmin(t.right).value;// 找到右侧最小值替代t.right = remove(t.value, t.right);} else // 左右单空或者左右都空{if (t.left == null && t.right == null) {t = null;} else if (t.right != null) {t = t.right;} else if (t.left != null) {t = t.left;}return t;}return t;}
完整代码
二叉排序树完整代码为: