CRISPR载体(单gRNA)是什么?
CRISPR/Cas9(规律成簇的间隔短回文重复序列及相关蛋白9)核酸酶表达载体属于几种新兴的基因组编辑工具之一(另外两种是ZFN和TALEN),可在基因组的靶位点快速有效地产生突变。这些质粒载体编码的特异性RNA,能够引导DNA核酸酶(或缺刻酶)编辑基因组中特定位点的DNA序列。
Cas9是RNA引导DNA核酸酶,是天然原核免疫系统的一部分,赋予细菌产生对质粒和噬菌体等外源遗传物质的抵抗能力。在细胞内,Cas9核酸酶与引导RNA(gRNA)形成复合物,该复合物通过与基因组中的18-22 nt的同源靶序列直接相互作用,gRNA与靶位点通过互补配对使Cas9定位到靶序列上,然后切割基因组中的靶位点。为了方便使用,我们设计的CRISPR/Cas9载体能够在一个载体上同时有效表达Cas9核酸酶(或缺刻酶)和引导RNA(gRNA)。
我们的CRISPR/Cas9表达载体中有两种Cas9核酸酶供选择,一种是标准的人源化Cas9(hCas9),能够有效地在靶位点产生双链断裂(DSBs);另一种是“缺刻酶”(Cas9_D10A),仅在DNA中产生单链切割。如果将Cas9_D10A缺刻酶与靶向两条互补链的两个gRNA一起使用,缺刻酶会在两条链上产生单链切割,从而导致靶位点处产生DSB。这种方法通常会减少CRISPR/Cas9脱靶效应,因为它需要两个gRNA同时靶向靶位点。
细胞通过非同源末端连接途径(NHEJ)修复通常会产生小的片段或碱基缺失,插入和碱基置换等突变。当这些突变破坏蛋白质编码区(例如引起移码缺失)时,会引起功能性基因敲除。在少数情况下,CRISPR/Cas9载体和外源供体DNA模板共同导入细胞时,细胞会通过同源性修复(HDR)机制来修复DSB,靶基因DNA序列会被模板序列取代,碱基发生改变,如点突变等。缺刻基因组DNA也会经常发生同源修复(HDR),如将外源模板DNA与Cas9_D10A缺刻酶一起导入细胞中,有可能产生碱基改变。
利用CRISPR/Cas9系统可以有效靶向大部分DNA序列,而NGG(有时是NAG)是必须的。NGG叫做前间区序列邻近基序(PAM),位于靶DNA,gRNA识别序列的3'末端。