【中考专题】角系列之最大角问题(米勒问题)
1471年,德国数学家米勒向诺德尔提出这样一个问题:
如图,点A、B直线l的同一侧,在直线l上取一点P,使得∠APB最大,求P点位置.
圆外角:如图,像∠APB这样顶点在圆外,两边和圆相交的角叫圆外角.
相关结论:圆外角等于这个角所夹两条弧的度数差(大减小)的一半.
如图,∠P=∠ACB-∠PBC.
换句话说,对同一个圆而言,圆周角>圆外角.
结论:当点P不与A、B共线时,作△PAB的外接圆,当圆与直线l相切时,∠APB最大.
证明:在直线l上任取一点M(不与点P重合),连接AM、BM,
∠AMB即为圆O的圆外角,
∴∠APB>∠AMB,∠APB最大.
∴当圆与直线l相切时,∠APB最大.
特别地,若点A、B与P分别在一个角的两边,如下图,则有OP²=OA·OB.(切割线定理)
证明:∵∠POA=∠BOP,∠OPA=∠OBP(弦切角定理)
∴△AOP∽△POB,
∴OA/OP=OP/OB,
∴OP²=OA·OB.
即可通过OA、OB线段长确定OP长,便知P点位置.
最大角问题在中考中出现得并不多,也仅仅能称作是一个问题而已,但既然已经有考到了,我们就需要了解一下~
2019烟台中考
变式练习
已知最大角求直线
如图,在平面直角坐标系中,A(1,0)、B(5,0)直线l经过点C(-1,2),点P是直线l上的动点,若∠APB的最大值为45°,求直线l的解析式.
【分析】
考虑到直线l未知但∠APB的最大值已知为45°,故构造圆.
记△ABP外接圆圆心为M点,则∠AMB=2∠APB=90°,
故可确定M点位置.
根据A(1,0)、B(5,0),不难求得M点坐标为(3,2),
连接MC、MP,考虑到圆M与直线CP相切,故MP⊥CP,△CPM是直角三角形.
∵MC=4,MP=MA=2根号2,
∴CP=2根号2,即△CPM是等腰直角三角形,
易求P点坐标为(1,4),
又C点坐标为(-1,2),
可求直线l的解析式为y=x+3.
/