1°、2°、3°到360°三角函数解析值求法

原创泗水亭长2021-05-01 12:25:57

三角函数正弦函数的定义

百度百科:

定义一:正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

突然发现,这个定义是有问题的。这个定义非常直观,适合入门,但问题是只能将角的取值范围定义为0°到90°之间,而且不包括0°和90°。这个定义不支持自变量的取值范围:

另一个高级的定义:在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。

这个定义就没有上述限制了。

三角函数对照表

以前是没有计算器或其他任何电子计算工具,当时人们是计算三角函数值时,常常采用三角函数对照表。

三角函数对照表

但三角函数对照表是近似值,在一些计算精度要求很高的场景,可能并不能满足要求。

三角函数的解析值含义

以正弦函数值求法为例,因为求得正弦函数值,就不难求出其他三角函数的解析值。这里的解析值是指精确解(如

),而非近似解(如1.41421356237)。

从下文可以看出,1°到90°的三角函数(如正弦函数值)都有解析解,都可以通过正整数的加减乘除、开根号(二次根号、三次根号等)、负号等构成的表达式表示,是精确值,而非三角函数表中的近似值。

根据三角函数的诱导公式,就不难求出91°-360°角的三角函数解析值。

0°-90°的三角函数解析值求法

根据正弦函数的定义,不难得到:

道生无,无即0。“道”(Tao)即前面的关于正弦函数的定义。

我们就从0出发给出所有1°到89°的正弦函数的解析值(注意是精确的解析值,而非小数的近似值)的求法。

,所以

根据正弦函数半角公式,得出:

根据正弦函数的三倍角公式得到:

,也即

,这个是

的一元三次方程。解该方程,得到:

15°角的三角函数值有其他求法,如

根据正弦函数的三倍角公式得到:

,也即

,这个是

的一元三次方程。解该方程,得到:

,这是一个用复数表示的实数。

下面求18°角的三角函数值,做如下等腰三角形

,并做辅助线

的角平分线,

。不难得到

。故

,即

,解得

是一元三次方程

的一个实根。一元三次方程一定有一个解析解等于

。这个解析解记为

,即

  • ,是一个非常复杂的复数表示的实数。

道家:无生有!

只要算出了

的值,其他任何整数度数的三角函数就迎刃而解了。正所谓“有生万物”!

  • (一生二)

,带入

的值,得到

,这个值与

的值

存在神秘的关联!!!

,带入

,计算得到:

,带入

,计算得到:

  • ,这个值与

    的值

    有密切的关系。

,带入相关值,得到:

,这个值形式上与

神秘关联。

,带入上述已经求出来的相关值,得到

,带入前面的计算结果,得到:

,这个值与形式上与

神秘关联。

,带入

的值,求得:

#

类似的当

,因为前面已经求出了

,故:

结论

1°、2°、3°、4°、5°、6°、7°、8°、9°、10°、

11°、12°、13°、14°、15°、16°、17°、18°、19°、20°、

21°、22°、23°、24°、25°、26°、27°、28°、29°、30°、

31°、32°、33°、34°、35°、36°、37°、38°、39°、40°、

41°、42°、43°、44°、45°的正弦函数值都是有精确解

,在此基础上可以计算出他们的余弦函数值

,再根据三角函数的诱导公式,计算出46°-90°的正弦函数,进而求出其他任意整数度数的三角函数精确值表达。

求得精确值后,在实际工程应用中,可以根据具体场景需要,计算到任意精度。

当然,人类的计算手段越来越丰富,实际工程中,多半会采用三角函数的泰勒级数展开,如

正弦函数的连分数表示:

这两个公式中的自变量

是弧度,而非度数。如果是弧度,级数展开公式变为:

(0)

相关推荐