轮毂电机驱动作为最先进的电动汽车驱动技术,是将2个、4个或者多个电机安装在车轮内部,直接驱动车轮,俗称电动轮,特别适合于纯电动汽车。它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动汽车的机械部分大大简化。图3为传统汽车与轮毂电机驱动的电动汽车底盘比较。由图3可见,轮毂电机驱动彻底取消了离合器、变速器、差速器和半轴等传动系统部件,使底盘结构简单,传动效率提高,车内获得更多空间,同时减少了整车质量且驱动布置合理,便于实现底盘智能化和电气化控制。轮毂电机驱动根据有无减速机构,又可分为直接驱动和减速驱动(减速驱动电动轮)[9]。直接驱动的电机外转子直接与轮毂机械连接,无减速结构,也称外转子式轮毂驱动,如图4a[7] 所示。电机最高转速一般在1500 r/min 左 右,车轮的转速与电机相同。其优点是电机体积小、质量轻、成本低、驱动结构紧凑、传递效率高。但在起步、爬坡等大负荷时需要转矩、大电流,容易损坏电池和永磁体。因此,为了保证足够大的起步转矩和较好的动力性,对电动机的要求较高,一般用低速外转子永磁同步电机。减速驱动是在电动机和车轮之间安装固定速比减速器,起减速增矩作用,也称内转子式轮毂驱动。减速装置通常采用传动比在10∶1左右的行星齿轮减速装置,可以保证汽车低速时获得足够大的转矩,如图 4b[7]所示。随着更为紧凑的行星齿轮减速器的出现,内转子式轮毂电机在功率密度方面比低速外转子式将更具竞争力。为获得较高的功率密度和适应现代高性能电动汽车的运行要求,所用电动机工作最高转速可达10000 r/min 以上,对电动机其它性能没有特殊要求,通常采用高速内转子永磁同步电机,电机输出动力减速增扭后驱动轮毂推动汽车行驶。电机体积小、质量轻、高转速运转比功率高;减速增矩后汽车爬坡性好,并可保证汽车在低速运行时具有较大的平稳转矩,但其结构相对复杂,非簧载质量增加对车辆平顺性和其操纵稳性产生影响。2 驱动性能与应用分析2.1 驱动性能分析表 1 为电动汽车不同电机驱动方式性能比较,它直观反映了不同驱动方式的电动汽车传动效率、经济性、操纵稳定性等方面的情况。结合表1和上述电机驱动方式可知:集中式驱动与传统内燃机汽车相似,具有传统内燃机汽车的传动系统零部件多、成本高、传动效率低、控制复杂等相应缺点。与集中式驱动相比,轮边电机驱动方式传动链短、经济性好、车身内部空间利用率高、制动能量回馈损耗小,但传动效率不如轮毂电机驱动高。轮毂电机驱动完全取消了传动系统零部件,将电机、悬架系统、制动系统同时放在轮辋里,使汽车结构紧凑,重心降低,行驶稳定性提高。轮毂电机与动力电池及控制器间采用线束连接,见图3b。车内空间布置更加灵活,降低车厢底板且底盘平整,增大空间,提高乘坐舒适性。同时,每个车轮运动相互独立,无硬性机械连接,可通过计算机和电机控制系统按汽车行驶状态对车轮驱动力和制动力进行快速优化、精确任意分配,便于实现线控转向,ABS,TCS及ESP 等功能,使得汽车转向灵便、动力学性能可靠、操纵稳定性好。此外,轮毂驱动还可实现电气制动、机电复合制动及制动能量回馈,能源消耗低、制动能量回收高,能量转化效率可达到 90%[10]。虽然轮毂电机驱动的汽车性能优点突出,但由于轮毂电机、制动系统甚至悬架系统同时集中在车轮上,导致汽车非簧载质量和车轮旋转部件的转动惯量显著增大,从而增加汽车垂直方向的振动幅度,甚至影响轮胎的附着性,不利于汽车的控制,还会降低汽车的平顺性和舒适性。2008年,米其林推出的主动车轮轮毂中设有2个电动机,其中一个向车轮输出转矩,另一个则是用于控制主动悬架系统,从而改善舒适性、操控性和稳定性。2.2 未来发展分析轮毂电机驱动具有其它驱动方式无法比拟的性能优点,虽然现在还无成熟的轮毂驱动汽车产品应用,但轮毂驱动作为一种新的先进驱动方式,是当前国内外电动汽车研究的重点、热点技术之一。现列举小部分轮毂电机驱动方面的研究,比如:文献[11]利用电机质量构造吸振器对非簧载质量引发的垂向振动负效应进行控制;文献[12-13]通过特殊电机设计将电机定子质量转化到簧载质量中去,使非簧载质量下降;文献[14]通过设置与悬架系统并联的减振机构将轮毂电机定子质量由簧下质量转化为簧上质量;文献[15]提出将整个电机质量作为簧载质量的方案,即在直接驱动轮毂电机的电动系统中直接将电机质量作为吸振器质量,不另外增加质量块;文献[16]开发了一种适用于轮毂电机电动车的专用悬架和转向系统,该系统包括一种双节臂式前悬架系统、扭杆梁式后悬架系统和机械转向系统。综上可见,科研人员正在针对轮毂电机驱动存在的不足进行多方面的改进、研发,包括高转矩轮毂电机的开发、智能化底盘的集成与控制、轻量化车身技术。相信非簧质量对汽车性能的影响等关键技术,会逐步解决轮毂电机直接驱动存在的各种缺陷与不足,探索出合理的新手段,充分发挥轮毂电机直接驱动的优点,从而使其成为电动汽车的最终驱动方式。3 结论通过电动汽车不同驱动方式性能分析,发现采用轮毂电机驱动方式的电动汽车结构最紧凑、车身内部空间利用率最高、整车重心低、行驶稳定性好、便于智能控制,在维护成本、安全性、大转矩驱动等方面都有其它驱动方式所不具备的优势,符合当今电动汽车驱动电机朝着小型化、高功率密度、高可靠性等方向发展的要求。轮毂电机直接驱动虽然还有一定的不足之处,技术尚未成熟,但不能阻挡其成为未来电动汽车驱动方式的首选时代需求。参考文献[1] 柴海波,鄢治国,况明伟,等. 电动车驱动电机发展现状[J]. 微特电机,2013,41(4):52-57.[2] 周逢军.基于双层架构的分布式驱动电动汽车综合控制策略研究[D]. 北京:北京理工大学,2014.[3] 刘金峰,张学义,扈建龙.电动汽车驱动电机发展展望[J].农业装备与车辆工程,2012,50(10):35-38. [4] Santiago J,Bernhoff H,Ekergrrd B,et al. Electrical MotorDrivelines in Commercial All- electric Vehicles:A Review[J]. IEEE Trans. Veh. Technol.,2012,61(2):475-484.[5] 刘刚. 电传动车辆开关磁阻电机驱动与控制系统研究[D].北京:北京科技大学,2015.[6] 王成元,夏加宽,孙宜标. 现代电机控制技术[M]. 北京:机械工业出版社,2010.[7] 徐威,张若平. 电动汽车传动方案的选择[J]. 汽车工程师,2014(8):54-56.[8] 刘浩,钟再敏,敬辉,等. 分布式驱动电动汽车轮边电机传动系统动态特性仿真[J]. 汽车工程,2014,36(5):597-607.[9] 何仁,张瑞军. 轮毂电机驱动技术的研究与进展[J]. 重庆理工大学学报(自然科学),2015,29(7):10-18. [10] Hori Y. Future Vehicle Driven by Electricity and Control-re⁃search on 4 Wheel Motored UOT March Ⅱ[J]. IEEE Transac⁃tions on Industrial Electronics,2004,51(5):954-962.[11] Nagaya G,Wakao Y,Abe A. Development of an In- wheelDrive with Advanced Dynamic-damper Mechanism[J]. JSAEReview,2003,24(4):477-481.[12] Johansen P R,Pattersib D,O′ keefe C. The Use of an AxialFlux Permanent Magnet In-wheel Direct Drive In an ElectricBicycle[J]. Renewable Energy,2001,22(1):151-157.[13] Yang Y P,Luh Y P,Cheng C H. Design and Control of AxialFlux Brushless DC Wheel Motors for Electric Vehicles—PartⅠ :Multi- objective Optimal Design and Analysis[J]. IEEETransaction on Magnetics,2004,40(4):1873-1882.[14]赵艳娥,张建武,韩旭. 轮毂电机独立驱动电动汽车动力减振机构设计与研究[J]. 机械科学与技术,2008,27(3):395-398.[15]罗虹,谢丹,马英. 动力吸振型电动轮动力传动机构分析与设计[J]. 机械科学与技术,2014,33(2):249-253.[16]史天泽. 轮毂电机驱动电动车悬架和转向系统设计与性能匹配[D]. 长春:吉林大学,2015.[17]谭迪. 内置悬置的轮毂电机驱动系统动力学特性及结构优化[D]. 广州:华南理工大学,2013.[18] Wang R,Chen Y,Feng D,et al. Development and Perfor⁃mance Characterization of an Electric Ground Vehicle with In⁃dependently Actuated In-wheel Motors[J]. Journal of PowerSources,2011(8):3962-3971.[19] Yu Chih-Hsien,Tseng Chyuan-Yow,Chang Chih-Ming. Studyon Power Train of Two Axles Four Wheel Drive Electric Vehi⁃cle[J]. Energy Procedia,2012(14):1528-1535.