MOS管知识详解(一)

MOS管,即金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管,是一种应用场效应原理工作的半导体器件;和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势,在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。

MOS管的种类及结构

MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。

图表1  MOS管的4种类型

每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。

图表2  MOS管内部结构图

从结构图可发现,N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。

MOS管工作原理

1N沟道增强型场效应管原理

N沟道增强型MOS管在P型半导体上生成一层SiO2薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极(漏极D、源极S);在源极和漏极之间的SiO2绝缘层上镀一层金属铝作为栅极G;P型半导体称为衬底,用符号B表示。由于栅极与其它电极之间是相互绝缘的,所以NMOS又被称为绝缘栅型场效应管。

当栅极G和源极S之间不加任何电压,即VGS=0时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012Ω,即D、S之间不具备导电的沟道,所以无论在漏、源极之间加何种极性的电压,都不会产生漏极电流ID。

图表3  N沟道增强型MOS管结构示意图

当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即VGS>0时,如图表3(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。

如果进一步提高VGS电压,使VGS达到某一电压VT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,如图表3(b)所示。

反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的VGS值称为阈值电压或开启电压,用VGS(th)表示。显然,只有VGS>VGS(th)时才有沟道,而且VGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强;“增强型”一词也由此得来。

图表4  耗尽层与反型层产生的结构示意图

在VGS>VGS(th)的条件下,如果在漏极D和源极S之间加上正电压VDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压VGD最小,其值为VGD=VGS-VDS,相应的沟道最薄;靠近源区一端的电压最大,等于VGS,相应的沟道最厚。

这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着VDS的增大,靠近漏区一端的沟道越来越薄。

当VDS增大到某一临界值,使VGD≤VGS(th)时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,如图表4(a)所示。继续增大VDS[即VDS>VGS-VGS(th)],夹断点向源极方向移动,如图表4(b)所示。

尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于VGS-VGS(th)。因此,VDS多余部分电压[VDS-(VGS-VGS(th))]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极。

图表5  预夹断及夹断区形成示意图

2P沟道增强型场效应管原理

P沟道增强型MOS管因在N型衬底中生成P型反型层而得名,其通过光刻、扩散的方法或其他手段,在N型衬底(基片)上制作出两个掺杂的P区,分别引出电极(源极S和漏极D),同时在漏极与源极之间的SiO2绝缘层上制作金属栅极G。其结构和工作原理与N沟道MOS管类似;只是使用的栅-源和漏-源电压极性与N沟道MOS管相反。

在正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏极对源极的电压VDS应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压也应为负。

图表6  P沟道增强型MOS管的结构示意图

当VDS=0时。在栅源之间加负电压比,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层。

随着G、S间负电压的增加,耗尽层加宽,当VDS增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,如图表6(2)所示。

这个反型层就构成漏源之间的导电沟道,这时的VGS称为开启电压VGS(th),达到VGS(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用VGS的大小控制导电沟道的宽度。

图表7  P沟道增强型MOS管耗尽层及反型层形成示意图

当VDS≠0时。导电沟道形成以后,D、S间加负向电压时,那么在源极与漏极之间将有漏极电流ID流通,而且ID随VDS而增,ID沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄,如图表7(1)所示。

当VDS增大到使VGD=VGS(即VDS=VGS-VGS(TH)),沟道在漏极附近出现预夹断,如图表7(2)所示。再继续增大VDS,夹断区只是稍有加长,而沟道电流基本上保持预夹断时的数值,其原因是当出现预夹断时再继续增大VDS,VDS的多余部分就全部加在漏极附近的夹断区上,故形成的漏极电流ID近似与VDS无关。

图表8  P沟道增强型MOS管预夹断及夹断区形成示意图

3N沟道耗尽型场效应管原理

N沟道耗尽型MOS管的结构与增强型MOS管结构类似,只有一点不同,就是N沟道耗尽型MOS管在栅极电压VGS=0时,沟道已经存在。这是因为N沟道是在制造过程中采用离子注入法预先在D、S之间衬底的表面、栅极下方的SiO2绝缘层中掺入了大量的金属正离子,该沟道亦称为初始沟道。

当VGS=0时,这些正离子已经感应出反型层,形成了沟道,所以只要有漏源电压,就有漏极电流存在;当VGS>0时,将使ID进一步增加;VGS<0时,随着VGS的减小,漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压或阈值电压,用符号VGS(off)或Up表示。

由于耗尽型MOSFET在VGS=0时,漏源之间的沟道已经存在,所以只要加上VDS,就有ID流通。如果增加正向栅压VGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。

如果在栅极加负电压(即VGS<0),就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压VGS(off)时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使VDS仍存在,也不会产生漏极电流,即ID=0。

图表9  N沟道耗尽型MOS管结构(左)及转移特性(右)示意图

4P沟道耗尽型场效应管原理

P沟道耗尽型MOS管的工作原理与N沟道耗尽型MOS管完全相同,只不过导电的载流子不同,供电电压极性也不同。

5耗尽型与增强型MOS管的区别

耗尽型与增强型的主要区别在于耗尽型MOS管在G端(Gate)不加电压时有导电沟道存在,而增强型MOS管只有在开启后,才会出现导电沟道;两者的控制方式也不一样,耗尽型MOS管的VGS(栅极电压)可以用正、零、负电压控制导通,而增强型MOS管必须使得VGS>VGS(th)(栅极阈值电压)才行。

由于耗尽型N沟道MOS管在SiO2绝缘层中掺有大量的Na+或K+正离子(制造P沟道耗尽型MOS管时掺入负离子),当VGS=0时,这些正离子产生的电场能在P型衬底中感应出足够的电子,形成N型导电沟道;当VGS>0时,将产生较大的ID(漏极电流);如果使VGS<0,则它将削弱正离子所形成的电场,使N沟道变窄,从而使ID减小。

这些特性使得耗尽型MOS管在实际应用中,当设备开机时可能会误触发MOS管,导致整机失效;不易被控制,使得其应用极少。

因此,日常我们看到的NMOS、PMOS多为增强型MOS管;其中,PMOS可以很方便地用作高端驱动。不过PMOS由于存在导通电阻大、价格贵、替换种类少等问题,在高端驱动中,通常还是使用NMOS替代,这也是市面上无论是应用还是产品种类,增强型NMOS管最为常见的重要原因,尤其在开关电源和马达驱动的应用中,一般都用NMOS管。

MOS管重要特性

1导通特性

导通的意义是作为开关,相当于开关闭合。NMOS的特性,VGS大于一定的值就会导通,适用于源极接地时的情况(低端驱动),只需栅极电压达到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就会导通,适用于源极接VCC时的情况(高端驱动)。

2损失特性

不管是NMOS还是PMOS,导通后都有导通电阻存在,电流就会被电阻消耗能量,这部分消耗的能量叫做导通损耗。小功率MOS管导通电阻一般在几毫欧至几十毫欧左右,选择导通电阻小的MOS管会减小导通损耗。

MOS管在进行导通和截止时,两端的电压有一个降落过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,这称之为开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

导通瞬间电压和电流的乘积越大,构成的损失也就越大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

3寄生电容驱动特性

跟双极性晶体管相比,MOS管需要GS电压高于一定的值才能导通,而且还要求较快的导通速度。在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,理论上就是对电容的充放电。

对电容的充电需要一个电流,由于对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一个要留意的是可提供瞬间短路电流的大小;第二个要留意的是,普遍用于高端驱动的NMOS,导通时需要栅极电压大于源极电压。

而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极导通电压要比VCC高4V或10V,而且电压越高,导通速度越快,导通电阻也越小。

图表10  4种MOS管特性比较示意图

4寄生二极管

漏极和源极之间有一个寄生二极管,即“体二极管”,在驱动感性负载(如马达、继电器)应用中,主要用于保护回路。不过体二极管只在单个MOS管中存在,在集成电路芯片内部通常是没有的。

图表11  寄生二极管位置示意图

5不同耐压MOS管特点

不同耐压的MOS管,其导通电阻中各部分电阻比例分布不同。如耐压30V的MOS管,其外延层电阻仅为总导通电阻的29%,耐压600V的MOS管的外延层电阻则是总导通电阻的96.5%。

不同耐压MOS管的区别主要在于,耐高压的MOS管其反应速度比耐低压的MOS管要慢,因此,它们的特性在实际应用中也表现出了不一样之处,如耐中低压MOS管只需要极低的栅极电荷就可以满足强大电流和大功率处理能力,除开关速度快之外,还具有开关损耗低的特点,特别适应PWM输出模式应用;而耐高压MOS管具有输入阻抗高的特性,在电子镇流器、电子变压器、开关电源方面应用较多。

图表12  不同耐压MOS管特点一览表

(0)

相关推荐

  • 半导体概念科普——MOSFET是什么:工作原理及其应用

    Hi,大家好.欢迎来到我们[半导体概念科普]系列文章,本系列会针对半导体重要且基础的概念做一些科普,辅助一些技术报告/文章的阅读和理解. 集成电路按照所使用的半导体材料,分为硅IC和化合物IC两大类, ...

  • COMS原理及门电路设计

    目录 1.N/P MOS管的物理结构图 2.N/P MOS管的工作原理 3.N/P MOS管的抽象模型 4.典型门电路设计 1.cmos反相器设计 2.coms与非门与或非门设计 3.与或非门.或与非 ...

  • AO3402C/AO3414

    AOTS32348C AO3402C/AO3414-nmos电路图详解-AO3402/AO3406-nmos结构及工作原理-电压:20V/30V;电流:3A/3.6A/4A基本逻辑电路分析---NMO ...

  • MOS管知识详解(二)

    MOS管与三极管.IBGT的差别 1MOS管与三极管的差别 三极管全称为半导体三极管,它的主要作用就是将微小的信号中止放大.MOS管与三极管有着许多相近的地方,也有许多不同之处. 首先是开关速度的不同 ...

  • 3DMax基础知识详解,小白赶紧收藏!

    一 二维图形 线.圆形.弧.多边形.文本.截面.矩形.椭圆形.圆环.星形.螺旋线. 二 线的控制 1.修改面板:可对线进行"移动"."删除"等操作. 2.线条顶 ...

  • 步进电机知识详解,再不怕看不懂步进电机了!

    步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中.随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用.作为电力人对步进电机的也不能仅限 ...

  • 电气二次控制回路基础知识详解,一次讲清楚!

    蓝字  ' 学PLC联盟 "  关注我们哦! (来源:网络,侵删!)

  • 高考生物兴奋的产生和传递的知识详解

    高考生物兴奋的产生和传递的知识详解

  • 高压电气设备基础知识详解

    高压电气设备基础知识详解

  • 电磁阀基础知识详解:原理、维护、选型

    编者 电磁阀是用电磁控制的工业设备,在工业控制系统中调整介质的方向.流量.速度和其他的参数.针对电磁阀的特点,电磁阀应该如何选型?为了延长电磁阀寿命,又该如何保养维护呢? 解读 | 电磁阀结构原理 ( ...

  • 中药的配伍知识详解 !

    配伍是指有目的地按病情需要和药性特点,有选择地将两味以上药物配合同用. 前人把单味药的应用同药与药之间的配伍关系称为药物为"七情"."七情"的提法首见于< ...

  • 八字命理基础知识详解

    八字命理基础知识解析 八字命理初学知识<大运><流年> 大 运 以一干一支为一个大运,共管十年;天干司事五年,地支管事五年.行运在干,必须兼看地支;行运在支,必须兼看天干;但是 ...