基于PostgreSQL流复制的容灾库架构设想及实现

一、前言

这几天在对PostgreSQL流复制的架构进行深入研究,其中一个关键的参数:recovery_min_apply_delay引起了我的注意,设置该参数的大概意思是:在进行流复制的时候,备库会延迟主库recovery_min_apply_delay的时间进行应用。比如说,我们在主库上insert10条数据,不会立即在备库上生效,而是在recovery_min_apply_delay的时间后,备库才能完成应用。

另外,我们知道在PostgreSQL中,其mvcc机制并不像Oracle或者MySQL一样,将旧版本数据存放在另外的空间中,而是通过对事务号(xid)的控制对旧版本数据不可见的方式进行实现。所以PostgreSQL中无法实现类似于Oracle的闪回机制。

在日常操作过程中,对表进行delete、truncate、drop等误操作都不能通过闪回来快速恢复。不怕一万,就怕万一,在做数据库维护的6年多里,遇到过的误操作还是很多。那么在PostgreSQL这种无法实现闪回的数据库中,如果出现误操作如何快速恢复呢?

二、架构简介

对于PostgreSQL数据库这种无法进行闪回的数据库来讲,最常用的办法就是通过备份+归档的方式进行数据恢复。但是这种恢复方式也有弊端,当数据库非常大时,恢复全量备份也会非常的慢,而且如果全量备份是一周前或者更久前的,那么恢复归档也会需要比较长的时间。这段时间内,可能业务就会长时间停摆,造成一定的损失。
如果通过流复制延迟特性作为生产数据库的容灾库,则可以从一定程度上解决该问题,其简单架构如下:
三、恢复步骤

PostgreSQL流复制容灾库架构的误操作恢复步骤如下:

1.主库出现误操作,查看流复制的replay状态;

2.在recovery_min_apply_delay时间内,暂停备库的replay;

3.判断主库出现的误操作类型(delete/truncate/drop);

4.根据主库误操作类型,对备库进行相应的操作;

5.通过pg_dump将误操作表导出;

6.在主库对pg_dump出的表进行恢复。

假设当前备库与主库相差10min,则误操作可以分为以下两个场景:

1)delete操作:

首先我们需要知道的是,针对delete操作,PostgreSQL会给相关表加一个ROW EXCLUSIVE锁,而该锁不会对select等dql操作进行阻塞。

所以当我们在主库进行delete误操作后,备库则会晚10min中进行replay。且此时可以对该表进行查询和pg_dump的导出。针对于主库delete误操作,恢复步骤如下:

第一步,查看流复制replay的状态,重点关注replay_lsn字段:

select * from pg_stat_replication;
postgres=# select * from pg_stat_replication;
-[ RECORD 1 ]----+------------------------------
pid | 55694
usesysid | 24746
usename | repl
application_name | walreceiver
client_addr | 192.168.18.82
client_hostname |
client_port | 31550
backend_start | 2021-01-20 09:54:57.039779+08
backend_xmin |
state | streaming
sent_lsn | 6/D2A17120
write_lsn | 6/D2A17120
flush_lsn | 6/D2A17120
replay_lsn | 6/D2A170B8
write_lag | 00:00:00.000119
flush_lag | 00:00:00.000239
replay_lag | 00:00:50.653858
sync_priority | 0
sync_state | async
reply_time | 2021-01-20 14:11:31.704194+08
此时可以发现数据库中的replay_lsn字段的lsn值要比sent_lsn/write_lsn/flush_lsn都要小;
第二步,为了防止处理或者导出时间过慢而导致的数据同步,立即暂停备库的replay:

select * from pg_wal_replay_pause();

查看同步状态:

postgres=# select * from pg_is_wal_replay_paused();

pg_is_wal_replay_paused
-------------------------
t
(1 row)

第三步,在备库查看数据是否存在:

select * from wangxin1;

第四步,通过pg_dump,将表内容导出:

pg_dump -h 192.168.18.182 -p 18802 -d postgres -U postgres -t wangxin1 --data-only --inserts -f wangxin1_data_only.sql

第五步,在主库执行sql文件,将数据重新插入:

psql -p 18801
\i wangxin1_data_only.sql

恢复即完成。
2)truncate和drop:
这里首先需要知道的是,truncate和drop操作会给表加上一个access exclusive锁,该类型锁是PostgreSQL数据库中最严重的锁。如果表上有该锁,则会阻止所有对该此表的访问操作,其中也包括select和pg_dump操作。
所以说,在我们对主库中的某张表进行truncate或者drop后,同样,备库会由于recovery_min_apply_delay参数比主库晚完成truncate或drop动作10min(从参数理论上是这样理解的,但实际并不是)。
那么针对truncate和drop的恢复过程我们也参考delete的方式来进行:

-[ RECORD 2 ]----+------------------------------
pid | 67008
usesysid | 24746
usename | repl
application_name | walreceiver
client_addr | 192.168.18.82
client_hostname |
client_port | 32122
backend_start | 2021-01-20 23:33:05.538858+08
backend_xmin |
state | streaming
sent_lsn | 7/3F0593E0
write_lsn | 7/3F0593E0
flush_lsn | 7/3F0593E0
replay_lsn | 7/3F059330
write_lag | 00:00:00.000141
flush_lag | 00:00:00.000324
replay_lag | 00:00:11.471699
sync_priority | 0
sync_state | async
reply_time | 2021-01-20 23:33:58.303686+08

接下来,为防止处理或导出时间过慢而导致的数据同步,应立即暂停备库的replay:

select * from pg_wal_replay_pause();

查看同步状态:

postgres=# select * from pg_is_wal_replay_paused();

pg_is_wal_replay_paused
-------------------------
t
(1 row)

接着,在备库查看数据是否存在:

select * from wangxin1;

但是,此时就会发现问题:数据无法select出来,整个select进程会卡住(pg_dump也一样):


^CCancel request sent
ERROR: canceling statement due to user request

此时,可以对备库上的锁信息进行查询:

select s.pid,
s.datname,
s.usename,
l.relation::regclass,
s.client_addr,
now()-s.query_start,
s.wait_event,
s.wait_event_type,
l.granted,
l.mode,
s.query
from pg_stat_activity s ,pg_locks l
where s.pid<>pg_backend_pid()
and s.pid=l.pid;

pid | datname | usename | relation | client_addr | ?column? | wait_event | wait_event_type | granted | mode | query
-------+---------+---------+----------+-------------+----------+--------------------+-----------------+---------+---------------------+-------
55689 | | | | | | RecoveryApplyDelay | Timeout | t | ExclusiveLock |
55689 | | | wangxin1 | | | RecoveryApplyDelay | Timeout | t | AccessExclusiveLock |
(2 rows)

发现此时truncate的表被锁住了,而pid进程则是备库的recover进程,所以此时我们根本无法访问该表,也就无法做pg_dump操作了。
因此,想要恢复则必须想办法将数据库还原到锁表之前的操作。于是对PostgreSQL的wal日志进行分析查看:

pg_waldump -p /pgdata/pg_wal -s 7/3F000000

rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F050D70, prev 7/3F050D40, desc: RUNNING_XACTS nextXid 13643577 latestCompletedXid 13643576 oldestRunningXid 13643577
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643577, lsn: 7/3F050DA8, prev 7/3F050D70, desc: NEW_CID rel 1663/13593/2619; tid 20/27; cmin: 4294967295, cmax: 0, combo: 4294967295
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643577, lsn: 7/3F050DE8, prev 7/3F050DA8, desc: NEW_CID rel 1663/13593/2619; tid 20/23; cmin: 0, cmax: 4294967295, combo: 4294967295
rmgr: Heap len (rec/tot): 65/ 6889, tx: 13643577, lsn: 7/3F050E28, prev 7/3F050DE8, desc: HOT_UPDATE off 27 xmax 13643577 flags 0x00 ; new off 23 xmax 0, blkref #0: rel 1663/13593/2619 blk 20 FPW
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643577, lsn: 7/3F052930, prev 7/3F050E28, desc: NEW_CID rel 1663/13593/2619; tid 20/28; cmin: 4294967295, cmax: 0, combo: 4294967295
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643577, lsn: 7/3F052970, prev 7/3F052930, desc: NEW_CID rel 1663/13593/2619; tid 20/24; cmin: 0, cmax: 4294967295, combo: 4294967295
rmgr: Heap len (rec/tot): 76/ 76, tx: 13643577, lsn: 7/3F0529B0, prev 7/3F052970, desc: HOT_UPDATE off 28 xmax 13643577 flags 0x20 ; new off 24 xmax 0, blkref #0: rel 1663/13593/2619 blk 20
rmgr: Heap len (rec/tot): 53/ 7349, tx: 13643577, lsn: 7/3F052A00, prev 7/3F0529B0, desc: INPLACE off 13, blkref #0: rel 1663/13593/1259 blk 1 FPW
rmgr: Transaction len (rec/tot): 130/ 130, tx: 13643577, lsn: 7/3F0546D0, prev 7/3F052A00, desc: COMMIT 2021-01-20 23:31:23.009466 CST; inval msgs: catcache 58 catcache 58 catcache 50 catcache 49 relcache 24780
rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F054758, prev 7/3F0546D0, desc: RUNNING_XACTS nextXid 13643578 latestCompletedXid 13643577 oldestRunningXid 13643578
rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F054790, prev 7/3F054758, desc: RUNNING_XACTS nextXid 13643578 latestCompletedXid 13643577 oldestRunningXid 13643578
rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn: 7/3F0547C8, prev 7/3F054790, desc: CHECKPOINT_ONLINE redo 7/3F054790; tli 1; prev tli 1; fpw true; xid 0:13643578; oid 33072; multi 1; offset 0; oldest xid 479 in DB 1; oldest multi 1 in DB 1; oldest/newest commit timestamp xid: 0/0; oldest running xid 13643578; online
rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F054840, prev 7/3F0547C8, desc: RUNNING_XACTS nextXid 13643578 latestCompletedXid 13643577 oldestRunningXid 13643578
rmgr: Standby len (rec/tot): 42/ 42, tx: 13643578, lsn: 7/3F054878, prev 7/3F054840, desc: LOCK xid 13643578 db 13593 rel 24780
rmgr: Storage len (rec/tot): 42/ 42, tx: 13643578, lsn: 7/3F0548A8, prev 7/3F054878, desc: CREATE base/13593/24885
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643578, lsn: 7/3F0548D8, prev 7/3F0548A8, desc: NEW_CID rel 1663/13593/1259; tid 1/13; cmin: 4294967295, cmax: 0, combo: 4294967295
rmgr: Heap2 len (rec/tot): 60/ 60, tx: 13643578, lsn: 7/3F054918, prev 7/3F0548D8, desc: NEW_CID rel 1663/13593/1259; tid 1/14; cmin: 0, cmax: 4294967295, combo: 4294967295
rmgr: Heap len (rec/tot): 65/ 7537, tx: 13643578, lsn: 7/3F054958, prev 7/3F054918, desc: UPDATE off 13 xmax 13643578 flags 0x00 ; new off 14 xmax 0, blkref #0: rel 1663/13593/1259 blk 1 FPW
rmgr: Heap2 len (rec/tot): 76/ 76, tx: 13643578, lsn: 7/3F0566E8, prev 7/3F054958, desc: CLEAN remxid 13642576, blkref #0: rel 1663/13593/1259 blk 1
rmgr: Btree len (rec/tot): 53/ 3573, tx: 13643578, lsn: 7/3F056738, prev 7/3F0566E8, desc: INSERT_LEAF off 141, blkref #0: rel 1663/13593/2662 blk 2 FPW
rmgr: Btree len (rec/tot): 53/ 5349, tx: 13643578, lsn: 7/3F057530, prev 7/3F056738, desc: INSERT_LEAF off 117, blkref #0: rel 1663/13593/2663 blk 2 FPW
rmgr: Btree len (rec/tot): 53/ 2253, tx: 13643578, lsn: 7/3F058A30, prev 7/3F057530, desc: INSERT_LEAF off 108, blkref #0: rel 1663/13593/3455 blk 4 FPW
rmgr: Heap len (rec/tot): 42/ 42, tx: 13643578, lsn: 7/3F059300, prev 7/3F058A30, desc: TRUNCATE nrelids 1 relids 24780
rmgr: Transaction len (rec/tot): 114/ 114, tx: 13643578, lsn: 7/3F059330, prev 7/3F059300, desc: COMMIT 2021-01-20 23:33:46.831804 CST; rels: base/13593/24884; inval msgs: catcache 50 catcache 49 relcache 24780
rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F0593A8, prev 7/3F059330, desc: RUNNING_XACTS nextXid 13643579 latestCompletedXid 13643578 oldestRunningXid 13643579
rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn: 7/3F0593E0, prev 7/3F0593A8, desc: RUNNING_XACTS nextXid 13643579 latestCompletedXid 13643578 oldestRunningXid 13643579
rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

从wal日志的分析中,可以非常明显的看到,在最后一次checkpoint点后(恢复的起始点),正常来说,数据库会继续执行lsn为7/3F054840的步骤开启事务,并在下一步lsn为7/3F054878的步骤直接对oid为24780(通过oid2name可以知道,这张表就是我们误操作表)的表进行lock操作,做一系列相关的操作后,进行了truncate,最后进行commit操作。
而这一系列操作,我们则可以认为是truncate一张表的正常操作。
由于我们知道checkpoint点是数据库的恢复起始点,那么我们是否可以将数据库恢复到这一点的lsn呢?此时的lsn肯定不会对表进行lock操作,那么我们就可以对该表进行pg_dump操作了。
想法是好的,但是实际操作则没那么顺利。我们可以通过对备库PostgreSQL的配置文件进行修改,加入参数:
recovery_target_lsn= '7/3F0547C8’
recovery_target_action= 'pause’
重启数据库。

此时却发现数据库无法启动,通过对日志查看,发现原因竟然是:

这个恢复点,是一致性恢复点之前的点,所以无法正常恢复。

此时就出现了令我们奇怪的点,我们知道checkpoint的两个主要作用是:将脏数据进行刷盘;将wal日志的checkpoint进行记录。此时,肯定是数据库一致的点,但是为什么会报不一致呢?

经过一点一点的尝试,发现能够恢复的lsn点,只有truncate或者drop的commit操作的前面。那么这样我们还是无法对误操作表进行解锁。

最后,只能通过一种方式,即pg_resetwal的方式,强制指定备库恢复到我们想要的lsn点:

pg_resetwal -D data1 -x 559 Write-ahead log reset

再进行pg_dump即可。

但是,此时PostgreSQL的主备流复制关系已经被破坏,只能重新搭建或者以其他方式进行恢复(比如pg_rewind)。

四、问题分析

再次返回到进行truncate或drop的恢复步骤中,我们可以发现一个问题,为什么在checkpoint点后、truncate点前,无法将数据库恢复到一致点呢?为什么会报错呢?

按照常理来讲,checkpoint点就是恢复数据库的起始点,也是一致点,但是却无法恢复了。
继续进行详细的探究后发现一个现象:
延迟流复制过程中,我们配置了recovery_min_apply_delay参数,对源端数据库做truncate后,备库replay的lsn,停留在truncate表后的commit操作。而从主库的pg_stat_replication的replay_lsn值来看,此时备库的recover进程,应该就是在执行最后的commit的lsn;
更形象的来说,此时备库类似于我执行以下命令:

begin;
truncate table;

也就是说,此时我并没有提交,而备库也正在等待我进行提交,所以此时误操作表会被锁定。
但实际上,truncate table这个动作,已经在我的备库上进行了replay,只是最后的commit动作没有进行replay。因此,对于truncate动作之前所有lsn的操作已经是我当前数据库状态的一个过去式,无法恢复了,故会报错。
为了验证想法,在大佬的帮助下,又对PostgreSQL的源码进行查看,发现猜想原因确实没错:
在/src/backend/access/transam/xlog.c中,对于recovery_min_apply_delay参数有以下的一段描述:

/*
* Is it a COMMIT record?
*
* We deliberately choose not to delay aborts since they have no effect on
* MVCC. We already allow replay of records that don't have a timestamp,
* so there is already opportunity for issues caused by early conflicts on
* standbys.
*/

大概意思是,当record中没有时间戳(timestamp)的时候,数据库就已经进行了replay。replay只会等待有时间戳的record,而所有的record中,只有commit操作有时间戳,故replay会等待一个commit操作。
不过在实际的生产环境中,我们通常会把recovery_min_apply_delay参数设置的较大,而在这之间,一般都会有一些其他的事务进行操作,当主库出现误操作(哪怕说truncate/drop),只要及时发现,我们可以暂停replay的步骤,停在正常的事务操作下,此时误操作的表的事务还没有执行,那么这个容灾库还是比较有作用的。
墨天轮原文链接:https://www.modb.pro/db/44313(复制到浏览器或者点击“阅读原文”立即查看)
END
(0)

相关推荐

  • A1中的三位数转化为它的对码数

    在excel单元格A1中有数字369,在对码的定义下,如何在B1中变成814?类似A1的单元格很多,需要函数方便计算 对码定义:0=5,1=6,2=7,3=8,4=9是5组对码,意思是遇到0变成5,遇 ...

  • PostgreSQL 12 的同步流复制搭建及主库hang问题处理与分析

    前言 主备流复制,是PostgreSQL最常用.最简单的一种高可用.读写分离的形式,类似于Oracle的ADG,主库用于读写,备库可以只读. PostgreSQL流复制,有两种方式,分别是异步流复制和 ...

  • 争议 | 双活存储 vs 同步复制,同城存储容灾应选择哪种方案?

    来自twt社区同行交流,欢迎更多同行参与交流 同城存储容灾方案选择:双活存储vs同步复制? 目前主要业务还是主备型,平时业务生产,灾备有计算资源,这类型业务利用不起来双活存储.请教专家和同业,在构建构 ...

  • 保险行业混合云环境数据容灾与备份解决方案

    [摘要]云计算.大数据以及人工智能等各种数字化技术正在助力保险行业数字化转型,而其中海量非结构化数据的智能管理需要革命式的转换.与传统业务不同,烟囱式的管理.彼此业务的隔离以及传统数据中心的建设已经不 ...

  • 异地容灾系统方案设计与分析

    目 录 第 1 章 容灾技术规范 1.1 容灾的总体规划 1.1.1 技术指标 RPO.RTO 1.1.2 国际标准 SHARE 78 1.1.2.1 Tier0 1.1.2.2 Tier1 1.1. ...

  • 企业容灾架构选型解析(一):必知概念、跨中心数据复制技术

    [摘要]随着全球IT产业的飞速发展,企业的IT建设逐步成为主导业务发展的核心驱动力,基于企业IT架构容灾建设的各种行业标准以及监管标准也相应提高.提高企业整体容灾体系标准是摆在企业面前的挑战,但是面对 ...

  • 服务的容灾与容错

    引子 先介绍几个概念,同步一下认知: 容灾:是指系统冗余部署,当一处由于意外停止工作,整个系统应用还可以正常工作. 容错:是指在运行中出现错误(如上下游故障或概率性失败)仍可正常提供服务. 可用性:描 ...

  • 张槎流拍!容桂低价成交! 本周佛山土拍市场凉风突袭?

    新盘:玖悦澜湾 招商悦府  粤海·拾桂府 佛山D王硝烟尚未完全褪去,另一边市场的风向已经悄然发生转换. 纵观上半年佛山土拍市场的惊心动魄,一浪高过一浪.从"没有最高,只有更高"的土 ...

  • 河南郑州暴雨,突显数据中心备灾容灾机制重要性!

    河南暴雨   近日,河南遭遇暴雨.受这波大雨影响,有用户近日收到有主机合作的包括西部数码,景安在内的郑州多家主机商发来的机房断电通知,因机房断电部分机房和节点将临时停服,天佑郑州,希望早日度过难关! ...

  • 企业容灾架构选型解析(三):脑裂问题探讨

    [摘要]随着全球IT产业的飞速发展,企业的IT建设逐步成为主导业务发展的核心驱动力,基于企业IT架构容灾建设的各种行业标准以及监管标准也相应提高.提高企业整体容灾体系标准是摆在企业面前的挑战,但是面对 ...