共盼制造业的蝶变!工业大脑加速工业智能化升级
2018年9月19日,阿里巴巴董事局主席马云在“2018杭州·云栖大会”全面阐释对于新制造的思考。他表示,未来10~15年,所有的制造行业所面临的痛苦远远超过今天大家的想象,传统制造业必须向新制造转变才有机会。为什么这么说?制造业该如何转变?阿里云研究中心高级战略专家王岳发布了《工业大脑白皮书:人机边界重构 - 工业智能迈向规模化的引爆点》的研究报告,对制造业的现有困境和未来出路进行了一些深入的分析解读。
1
传统制造业的3个数字化新挑战
在技术变革的大趋势下,传统靠资源消耗型的企业肯定会越来越艰难,挑战会越来越大。
首先,工业时代考验的是生产一样东西的能力,但数据时代考验的是生产不一样东西的能力。现在,消费者的个性化需求与日俱增,但很多工厂在实现多品种、小批量、个性化、按需生产方面明显已经力不从心。
其次,传统企业中很多工厂设备的维护、工艺参数调节全凭经验,“标准动作”缺失,工厂难以找到行之有效的方法将经验进行量化、复用。而由于劳动力成本攀升,导致技术工人、工程师人才频繁进出,企业很容易陷入原地踏步、重复造轮子的窘境。
而且,随着工业现代化的不断演进,自动化和精益化的生产系统已经发展到了一个很高的水平,但也越来越接近生产的天花板。单纯的工业内部解决方案已经很难进一步提升运营效率,需要行之有效的手段让隐形和碎片化的工业问题浮出水面。
2
未来智能工厂的4个超能力
在白皮书中,王岳提到了工业大脑在天合光能、中策橡胶、京信通信、正泰新能源等项目上的实践案例,展示了其“独特”的4种超能力。凭借这些超能力,工业大脑正在成为制造业数字化转型的最佳助手。
1)跨界复制 -实践证明,工业大脑在图像识别、智能排产、设备预测性维护、能耗优化等方面的沉淀,具有较强的通用性,可以跨行业复用。比如用于电池片良率提升的工艺参数推荐技术,也可以应用在多晶硅、硅片及电池组件的生产良率优化。恒逸石化工业大脑项目在能耗优化上的经验积累,同样可以复制到钢铁、水泥、纺织等行业。
2)逆向推演 - 工业大脑强大的数学能力加上足够的计算速度,使得它有望通过模型有效识别海量参数间的关键路径,从结果逆向推导原因。这种方式突破了“专家经验”传统的思维定式,将隐性和碎片化的工业问题变得显性化,并由此生成新的知识。
3)微创手术 – 数字世界的试错成本远低于物理世界。大脑以微创的方式,并不需要大量的硬件投入与生产线的改变,仅通过在虚拟环境中对数据的改动与优化,即可产生明显的价值与收益,且试错成本低,路线不对可及时调头。
4)知识沉淀 - 知识、经验、方法、工艺与实践可封装在模型、SaaS软件和工业APP中,基于工业互联网平台传播,加速知识的流动。比如依托阿里云工业大脑AI创作间,可以像搭积木一样,快速搭建行业通用的数据模型,训练企业专属的工业智能。工厂的工程师即便不懂写代码,也一样可以进行智能应用的开发。
阿里云研究中心高级战略王岳专家特别指出,“工业大脑绝不是简单地模仿人脑,而是以自己独特的数据化思维方式解决人类解决不了的问题。工业脑的思考过程是从数据到知识再回归到数据的过程。”
3
工业大脑的正确打开方式
未来,工业大脑的力量将渗透到制造业全产业链、全价值链、全生命周期中,持续为制造业企业带来机会和增值空间。制造业不会消失,只有落后的制造业会消失。
企业想要正确地运用工业大脑实现自身的升级,关键在“小、快、准”, 以最低成本、最少时间、最小风险快速启动工业大脑,并逐步扩展与优化。同时,企业还需要一个新组织、一个新平台与一套新标准为工业大脑的梳理部署保驾护航。白皮书中还特别给出了详细的实施路径、配套的推进架构,以及工业大脑生态的顶层设计。