斯隆奖得主赵宇飞:大图世界里的数学利器 | 欲善其事,先利其器
编者按:数学的理论往往先行于实际应用,在时机成熟的时候迅速成为实际应用的有力工具。
作者 | 赵宇飞
编译 | 廖璐,贾伟
图正则引理
图极限
Fig8:左图为右边的图极限所取样的图(邻接矩阵的像素图像)
稀疏图
图论和加性组合
课程链接:
https://ocw.mit.edu/18-217F19
课程视频:
-> MIT OCW:
https://ocw.mit.edu/courses/mathematics/18-217-graph-theory-and-additive-combinatorics-fall-2019/video-lectures/
-> YouTube:
https://www.youtube.com/playlist?list=PLUl4u3cNGP62qauV_CpT1zKaGG_Vj5igX
-> B站:
https://space.bilibili.com/556006423/channel/detail?cid=127140
参考资料
[1] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.
[2] Endre Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.
[3] László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012.
[4] David Conlon, Jacob Fox, and Yufei Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256 (2014), 206–290. And
David Conlon, Jacob Fox, and Yufei Zhao, A relative Szemerédi theorem, Geom. Funct. Anal. 25 (2015), 733–762. And
David Conlon, Jacob Fox, and Yufei Zhao, The Green-Tao theorem: an exposition, EMS Surv. Math. Sci. 1 (2014), 249–282.
[5] Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math.(2) 167 (2008), 481–547.
[6] David Conlon, Jacob Fox, Benny Sudakov, and Yufei Zhao, The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc. (2), to appear. And
David Conlon, Jacob Fox, Benny Sudakov, and Yufei Zhao, Which graphs can be counted in C4-free graphs?, arXiv: 2106.03261.
[7] Christian Borgs, Jennifer T. Chayes, Henry Cohn, and Yufei Zhao, An Lp theory of sparse graph convergence II: LD convergence, quotients and right convergence, Ann. Probab. 46 (2018), 337–396.
[8] Béla Bollobás and Oliver Riordan, Metrics for sparse graphs, Surveys in combinatorics 2009, London Math. Soc. Lecture Note Ser., vol. 365, Cambridge Univ. Press, Cambridge, 2009, pp. 211–287.
[9] Ashwin Sah, Mehtaab Sawhney, Jonathan Tidor, and Yufei Zhao, A counterexample to the Bollobás-Riordan conjectures on sparse graph limits, Combin. Probab. Comput., to appear.