Seurat4.0系列教程5:交互技巧

此文演示了一些与 Seurat 对象交互的功能。为了演示,我们将使用在第一个教程中创建的 2,700 个 PBMC 对象。为了模拟我们有两个复制的情景,我们将随机分配每个集群中一半的细胞自"rep1",另一半来自"rep2"。

加载数据

library(Seurat)
library(SeuratData)
InstallData("pbmc3k")
pbmc <- LoadData("pbmc3k", type = "pbmc3k.final")

# pretend that cells were originally assigned to one of two replicates (we assign randomly here)
# if your cells do belong to multiple replicates, and you want to add this info to the Seurat
# object create a data frame with this information (similar to replicate.info below)
set.seed(42)
pbmc$replicate <- sample(c("rep1", "rep2"), size = ncol(pbmc), replace = TRUE)

在cluster ID 和replicate之间切换身份类型

# Plot UMAP, coloring cells by cell type (currently stored in object@ident)
DimPlot(pbmc, reduction = "umap")

# How do I create a UMAP plot where cells are colored by replicate?  First, store the current
# identities in a new column of meta.data called CellType
pbmc$CellType <- Idents(pbmc)
# Next, switch the identity class of all cells to reflect replicate ID
Idents(pbmc) <- "replicate"
DimPlot(pbmc, reduction = "umap")

# alternately : DimPlot(pbmc, reduction = 'umap', group.by = 'replicate') you can pass the
# shape.by to label points by both replicate and cell type

# Switch back to cell type labels
Idents(pbmc) <- "CellType"

通过cluster ID, replicate或两者兼有来列表展示细胞

# How many cells are in each cluster
table(Idents(pbmc))

## 
##  Naive CD4 T Memory CD4 T   CD14+ Mono            B        CD8 T FCGR3A+ Mono 
##          697          483          480          344          271          162 
##           NK           DC     Platelet 
##          155           32           14
# How many cells are in each replicate?
table(pbmc$replicate)

## 
## rep1 rep2 
## 1348 1290
# What proportion of cells are in each cluster?
prop.table(table(Idents(pbmc)))

## 
##  Naive CD4 T Memory CD4 T   CD14+ Mono            B        CD8 T FCGR3A+ Mono 
##  0.264215315  0.183093252  0.181956027  0.130401820  0.102729340  0.061410159 
##           NK           DC     Platelet 
##  0.058756634  0.012130402  0.005307051
# How does cluster membership vary by replicate?
table(Idents(pbmc), pbmc$replicate)

##               
##                rep1 rep2
##   Naive CD4 T   354  343
##   Memory CD4 T  249  234
##   CD14+ Mono    232  248
##   B             173  171
##   CD8 T         154  117
##   FCGR3A+ Mono   81   81
##   NK             81   74
##   DC             18   14
##   Platelet        6    8
prop.table(table(Idents(pbmc), pbmc$replicate), margin = 2)

##               
##                       rep1        rep2
##   Naive CD4 T  0.262611276 0.265891473
##   Memory CD4 T 0.184718101 0.181395349
##   CD14+ Mono   0.172106825 0.192248062
##   B            0.128338279 0.132558140
##   CD8 T        0.114243323 0.090697674
##   FCGR3A+ Mono 0.060089021 0.062790698
##   NK           0.060089021 0.057364341
##   DC           0.013353116 0.010852713
##   Platelet     0.004451039 0.006201550

选择特定的细胞类型取子集

# What are the cell names of all NK cells?
WhichCells(pbmc, idents = "NK")

##   [1] "AAACCGTGTATGCG" "AAATTCGATTCTCA" "AACCTTACGCGAGA" "AACGCCCTCGTACA"
##   [5] "AACGTCGAGTATCG" "AAGATTACCTCAAG" "AAGCAAGAGCTTAG" "AAGCAAGAGGTGTT"
##   [9] "AAGTAGGATACAGC" "AATACTGAATTGGC" "AATCCTTGGTGAGG" "AATCTCTGCTTTAC"
##  [13] "ACAAATTGTTGCGA" "ACAACCGAGGGATG" "ACAATTGATGACTG" "ACACCCTGGTGTTG"
##  [17] "ACAGGTACTGGTGT" "ACCTGGCTAAGTAG" "ACGAACACCTTGTT" "ACGATCGAGGACTT"
##  [21] "ACGCAATGGTTCAG" "ACGCTGCTGTTCTT" "ACGGAACTCAGATC" "ACGTGATGTGACAC"
##  [25] "ACGTTGGAGCCAAT" "ACTGCCACTCCGTC" "ACTGGCCTTCAGTG" "ACTTCAACGTAGGG"
##  [29] "AGAACAGAAATGCC" "AGATATACCCGTAA" "AGATTCCTGTTCAG" "AGCCTCTGCCAATG"
##  [33] "AGCGATTGAGATCC" "AGGATGCTTTAGGC" "AGGGACGAGTCAAC" "AGTAATACATCACG"
##  [37] "AGTCACGATGAGCT" "AGTTTGCTACTGGT" "ATACCACTGCCAAT" "ATACTCTGGTATGC"
##  [41] "ATCCCGTGCAGTCA" "ATCTTTCTTGTCCC" "ATGAAGGACTTGCC" "ATGATAACTTCACT"
##  [45] "ATGATATGGTGCTA" "ATGGACACGCATCA" "ATGGGTACATCGGT" "ATTAACGATGAGAA"
##  [49] "ATTCCAACTTAGGC" "CAAGGTTGTCTGGA" "CAATCTACTGACTG" "CACCACTGGCGAAG"
##  [53] "CACGGGTGGAGGAC" "CAGATGACATTCTC" "CAGCAATGGAGGGT" "CAGCGGACCTTTAC"
##  [57] "CAGCTCTGTGTGGT" "CAGTTTACACACGT" "CATCAGGACTTCCG" "CATCAGGATAGCCA"
##  [61] "CATGAGACGTTGAC" "CATTACACCAACTG" "CATTTCGAGATACC" "CCTCGAACACTTTC"
##  [65] "CGACCACTAAAGTG" "CGACCACTGCCAAT" "CGAGGCTGACGCTA" "CGCCGAGAGCTTAG"
##  [69] "CGGCGAACGACAAA" "CGGCGAACTACTTC" "CGGGCATGTCTCTA" "CGTACCTGGCATCA"
##  [73] "CGTGTAGACGATAC" "CGTGTAGAGTTACG" "CGTGTAGATTCGGA" "CTAAACCTCTGACA"
##  [77] "CTAACGGAACCGAT" "CTACGCACTGGTCA" "CTACTCCTATGTCG" "CTAGTTACGAAACA"
##  [81] "CTATACTGCTACGA" "CTATACTGTCTCAT" "CTCGACTGGTTGAC" "CTGAGAACGTAAAG"
##  [85] "CTTTAGTGACGGGA" "GAACCAACTTCCGC" "GAAGTGCTAAACGA" "GAATGCACCTTCGC"
##  [89] "GAATTAACGTCGTA" "GACGGCACACGGGA" "GAGCGCTGAAGATG" "GAGGTACTGACACT"
##  [93] "GAGGTGGATCCTCG" "GATAGAGAAGGGTG" "GATCCCTGACCTTT" "GCACACCTGTGCTA"
##  [97] "GCACCACTTCCTTA" "GCACTAGAGTCGTA" "GCAGGGCTATCGAC" "GCCGGAACGTTCTT"
## [101] "GCCTACACAGTTCG" "GCGCATCTTGCTCC" "GCGCGATGGTGCAT" "GGAAGGTGGCGAGA"
## [105] "GGACGCTGTCCTCG" "GGAGGCCTCGTTGA" "GGCAAGGAAAAAGC" "GGCATATGCTTATC"
## [109] "GGCCGAACTCTAGG" "GGCTAAACACCTGA" "GGGTTAACGTGCAT" "GGTGGAGAAACGGG"
## [113] "GTAGTGTGAGCGGA" "GTCGACCTGAATGA" "GTGATTCTGGTTCA" "GTGTATCTAGTAGA"
## [117] "GTTAAAACCGAGAG" "GTTCAACTGGGACA" "GTTGACGATATCGG" "TAACTCACTCTACT"
## [121] "TAAGAGGACTTGTT" "TAATGCCTCGTCTC" "TACGGCCTGGGACA" "TACTACTGATGTCG"
## [125] "TACTCTGAATCGAC" "TACTGTTGAGGCGA" "TAGCATCTCAGCTA" "TAGCCCACAGCTAC"
## [129] "TAGGGACTGAACTC" "TAGTGGTGAAGTGA" "TAGTTAGAACCACA" "TATGAATGGAGGAC"
## [133] "TATGGGTGCATCAG" "TATTTCCTGGAGGT" "TCAACACTGTTTGG" "TCAGACGACGTTAG"
## [137] "TCCCGAACACAGTC" "TCCTAAACCGCATA" "TCGATTTGCAGCTA" "TCTAACACCAGTTG"
## [141] "TGATAAACTCCGTC" "TGCACAGACGACAT" "TGCCACTGCGATAC" "TGCTGAGAGAGCAG"
## [145] "TGGAACACAAACAG" "TGGTAGACCCTCAC" "TGTAATGACACAAC" "TGTAATGAGGTAAA"
## [149] "TTACTCGATCTACT" "TTAGTCTGCCAACA" "TTCCAAACTCCCAC" "TTCCCACTTGAGGG"
## [153] "TTCTAGTGGAGAGC" "TTCTGATGGAGACG" "TTGTCATGGACGGA"
# How can I extract expression matrix for all NK cells (perhaps, to load into another package)
nk.raw.data <- as.matrix(GetAssayData(pbmc, slot = "counts")[, WhichCells(pbmc, ident = "NK")])

# Can I create a Seurat object based on expression of a feature or value in object metadata?
subset(pbmc, subset = MS4A1 > 1)

## An object of class Seurat 
## 13714 features across 414 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
subset(pbmc, subset = replicate == "rep2")

## An object of class Seurat 
## 13714 features across 1290 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
# Can I create a Seurat object of just the NK cells and B cells?
subset(pbmc, idents = c("NK", "B"))

## An object of class Seurat 
## 13714 features across 499 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
# Can I create a Seurat object of all cells except the NK cells and B cells?
subset(pbmc, idents = c("NK", "B"), invert = TRUE)

## An object of class Seurat 
## 13714 features across 2139 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap

# note that if you wish to perform additional rounds of clustering after subsetting we recommend
# re-running FindVariableFeatures() and ScaleData()

计算群内的平均基因表达

# How can I calculate the average expression of all cells within a cluster?
cluster.averages <- AverageExpression(pbmc)
head(cluster.averages[["RNA"]][, 1:5])

##               Naive CD4 T Memory CD4 T CD14+ Mono          B      CD8 T
## AL627309.1    0.006128664  0.005927264 0.04854338 0.00000000 0.02054586
## AP006222.2    0.000000000  0.008206078 0.01088471 0.00000000 0.01191488
## RP11-206L10.2 0.007453092  0.000000000 0.00000000 0.02065031 0.00000000
## RP11-206L10.9 0.000000000  0.000000000 0.01050116 0.00000000 0.00000000
## LINC00115     0.019118933  0.024690483 0.03753737 0.03888541 0.01948277
## NOC2L         0.497463190  0.359811462 0.27253750 0.58653489 0.55704897

# Return this information as a Seurat object (enables downstream plotting and analysis) First,
# replace spaces with underscores '_' so ggplot2 doesn't fail
orig.levels <- levels(pbmc)
Idents(pbmc) <- gsub(pattern = " ", replacement = "_", x = Idents(pbmc))
orig.levels <- gsub(pattern = " ", replacement = "_", x = orig.levels)
levels(pbmc) <- orig.levels
cluster.averages <- AverageExpression(pbmc, return.seurat = TRUE)
cluster.averages

## An object of class Seurat 
## 13714 features across 9 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)

# How can I plot the average expression of NK cells vs. CD8 T cells?  Pass do.hover = T for an
# interactive plot to identify gene outliers
CellScatter(cluster.averages, cell1 = "NK", cell2 = "CD8_T")

# How can I calculate expression averages separately for each replicate?
cluster.averages <- AverageExpression(pbmc, return.seurat = TRUE, add.ident = "replicate")
CellScatter(cluster.averages, cell1 = "CD8_T_rep1", cell2 = "CD8_T_rep2")

# You can also plot heatmaps of these 'in silico' bulk datasets to visualize agreement between
# replicates
DoHeatmap(cluster.averages, features = unlist(TopFeatures(pbmc[["pca"]], balanced = TRUE)), size = 3, 
    draw.lines = FALSE)

(0)

相关推荐

  • Seurat学习与使用(一)

    简介Seurat是一个r包,被设计用于单细胞rna-seq数据的细胞质控和分析.Seurat旨在使用户能够识别和解释单细胞转录组数据中的异质性来源,同时提供整合不同类型的单细胞数据的函数.目前Seur ...

  • 单细胞工具箱|Seurat官网标准流程

    学习单细胞转录组肯定先来一遍Seurat官网的标准流程. 数据来源于Peripheral Blood Mononuclear Cells (PBMC),共2700个单细胞, Illumina Next ...

  • 单细胞Marker基因可示化包Nebulosa

    与传统的转录组测序相比,单细胞测序技术噪声很大,使得单细胞转录组数据包含大量的dropout事件(导致基因表达量为0或接近0),即使是一些标记(Marker)基因也有可能表达量很低.当在使用其对聚类的 ...

  • Seurat4.0系列教程1:标准流程

    时代的洪流奔涌而至,单细胞技术也从旧时王谢堂前燕,飞入寻常百姓家.雪崩的时候,没有一片雪花是无辜的,你我也从素不相识,到被一起卷入单细胞天地.R语言和Seurat已以势如破竹之势进入4.0时代,天问一 ...

  • Seurat4.0系列教程3:合并数据集

    在此,我们将合并两个 10X PBMC 数据集:一个包含 4K 细胞,一个包含 8K 细胞.数据集可以在这里[1]找到. 首先,我们在数据中读入并创建两个Seurat对象. library(Seura ...

  • Seurat4.0系列教程4:整合分析

    scRNA-seq整合简介 对两个或两个以上单细胞数据集的整合分析提出了独特的挑战.特别是,在标准工作流下,识别存在于多个数据集中的基因可能存在问题.Seurat v4 包括一组方法,以匹配(或&qu ...

  • Seurat4.0系列教程6:常用命令

    Seurat 标准流程 标准 Seurat 工作流采用原始的单细胞表达数据,旨在数据中查找clusters.此过程包括数据标准化和高变基因选择.数据归一化.高变基因的PCA.共享近邻图形的构建以及使用 ...

  • Seurat4.0系列教程7:数据可视化方法

    我们将使用之前从 2,700个 PBMC 教程中计算的 Seurat 对象在 演示可视化技术.您可以从这里[1]下载此数据集 SeuratData::InstallData("pbmc3k& ...

  • Seurat4.0系列教程8:细胞周期评分和回归分析

    此教程展示了如何通过基于传统细胞周期相关marker计算细胞周期得分,并在预处理过程中将这些分数从数据中回归,以消除 scRNA-seq 数据中细胞周期异质性的影响.我们在小鼠造血祖细胞数据集上证明了 ...

  • Seurat4.0系列教程9:差异表达检测

    我们使用通过SeuratData[1]包提供的 2,700个 PBMC 来演示. 加载数据 library(Seurat) library(SeuratData) pbmc <- LoadDat ...

  • Seurat4.0系列教程10:降维

    加载数据 此教程演示了如何存储和与Seurat 中的降维信息进行交互.为了演示,我们将使用SeuratData[1]包提供的 2,700 个 PBMC 对象. library(Seurat) libr ...

  • Seurat4.0系列教程11:使用sctransform

    单细胞RNA-seq数据中的生物异质性经常受技术因素(包括测序深度)影响.每个细胞中检测到的分子数量在细胞之间可能显著变化,即使在相同的细胞类型内也是如此.对 scRNA-seq 数据的解释需要有效的 ...