《測圓海鏡》勾股形日月南﹝14﹞五和五較說

測圓海鏡勾股形日月南14五和五較

上傳書齋名:瀟湘館112  Xiāo XiāngGuǎn 112

何世強 Ho Sai Keung

提要:《測圓海鏡》之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。此等勾股形三邊形成一系列之恆等式,本文主要談及第14勾股形日月南相關之等式。

關鍵詞:明弦、明股、明勾、日月南

《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。

《測圓海鏡》之〈五和五較〉篇涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i ≦ 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即  ai2 + bi2 = ci2

有關以 a1b1c1aibici 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。

《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i ≦ 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即
 ai2 + bi2 = ci2

以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。

本文談及之勾股形乃“日月南”﹝又稱為“明”,因日月為明之故也﹞,亦即以下兩圖帶棗紅色之二勾股形,日月南之斜邊“日月”是為明弦,其直角為 14,以 14 之位置為 “南”,其勾股與弦分別為  a14﹝月南﹞、b14﹝日南﹞ 與 c14﹝日月﹞。注意 14 之點亦可表示“日月南”勾股形。

注意以下之“日月南”勾股形之位置:

注意圓徑為 a1 + b1c1,見上圖左之東南西北圓。

以下為日月南勾股形之三事﹝三事,三邊之長也﹞:

南月勾﹝又稱明勾﹞:a14 =

(c1a1)(b1c1 + a1)。

日南股﹝又稱明股﹞:b14 =

(c1a1)(b1c1 + a1)。

日月為明弦﹝簡稱明弦﹞:c14 =

(c1a1)(b1c1 + a1)。

日月南勾股形之三事和或較亦可以以 a1b1c1 表之。

若勾股形之弦 = c,勾 = a,股 = b,則以下為五和五較:

(1)      勾股和:a + b

(2)      勾股較:ba

(3)      勾弦和:a + c

(4)      勾弦較:ca

(5)      股弦和:b + c

(6)      股弦較:cb

(7)      弦較和:c + (ba) ﹝較指勾股較,和指弦與勾股較之和﹞

(8)      弦較較:c – (ba) ﹝第一較字指勾股較,第二較字指弦與勾股較之較﹞

(9)      弦和和:(a + b) + c ﹝第一和字指勾股和,第二和字指弦與勾股和之和。又稱為三事和﹞

(10)      弦和較:(a + b) – c ﹝第一和字指勾股和,第二較字指弦與勾股和之較。又稱為三事較﹞

以下為與明弦﹝勾股形日月南 (14)﹞有關之等式:

明弦勾股和即大差股內減明弦。其較則明弦內減虛股也。勾弦併即髙股。其較則髙股內少二之明勾也。股弦和即邊股內減大差勾。又為邊勾邊弦差。其較則半個虛黃方也。弦較和即大差上勾弦較。其較則虛股也。三事和即股圓差。其較則太虛上勾弦較。又為虛股內減虛黃方也。

以下為各條目之証明:

明弦勾股和即大差股內減明弦。

明弦勾股和=b14 + a14 =

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(a1 + b1) 。

已知大差股 =天坤股﹝又稱大差股﹞:

b10 = b1 – (a1 + b1c1) = b1a1b1 + c1 = c1a1

大差股內減明弦=b10c14

= (c1a1) –

(c1a1)(b1c1 + a1)

= (c1a1)[1–

(b1c1 + a1)]

=

(c1a1)[2a1b1c1b1 + c12c1a1]

=

(c1a1)[2a1b1c1b1 + a12 + b12c1a1]

=

(c1a1)[(a1 + b1)2c1(b1 + a1)]

=

(c1a1)(a1 + b1)(a1 + b1c1)。

所以明弦勾股和 = 大差股內減明弦。“內減”即以前者為被減數,後者為減數。

其較則明弦內減虛股也。

“其較”指明弦勾股較。

明弦勾股較=b14a14=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

]

=

(c1a1)(b1c1 + a1)(b1a1) 。

已知太虛股:b13 =

(c1b1)(c1a1)。

明弦內減虛股 = c14b13 =

(c1a1)(b1c1 + a1) –

(c1b1)(c1a1)

=

(c1a1)(b1c1 + a1) –

(b1c1 + a1)2

=

(b1c1 + a1)[

(c1a1) – (b1c1 + a1)]

=

(b1c1 + a1)(c12c1a1b12 + b1c1b1a1)

=

(b1c1 + a1)(a12c1a1+ b1c1b1a1)

=

(b1c1 + a1)[– a1(c1a1) + b1(c1a1)]

=

(b1c1 + a1)(c1a1)(b1a1) 。

所以明弦勾股較 = 明弦內減虛股。

勾弦併即髙股。

明弦勾弦併 = c14 + a14

=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+ 1]

=

(b1c1 + a1)(c1a1)(c1 + a1)

=

(b1c1 + a1)(c12a12)

=

(b1c1 + a1)b12

=

(a1 + b1c1) 。

已知天旦股﹝又稱上髙股﹞= b6 =

=

(a1 + b1c1) 。

所以明弦勾弦併 = 髙股。

其較則髙股內少二之明勾也。

“其較”指明弦勾弦較。

明弦勾弦較 = c14a14

=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(b1c1 + a1)(c1a1)(c1a1)

=

(b1c1 + a1) (c1a1)2

髙股內少二之﹝即乘以2﹞明勾 = b6 – 2 × a14

b6 – 2 × a14 =

(a1 + b1c1) – 2 ×

(c1a1)(b1c1 + a1)

= (a1 + b1c1)[

(c1a1)]

=

(a1 + b1c1)[b12 – 2a1c1 + 2a12]

=

(a1 + b1c1)[c12 – 2a1c1 + a12]

=

(a1 + b1c1)(c1a1)2

所以明弦勾弦較 = 髙股內少二之明勾。

股弦和即邊股內減大差勾。

明弦股弦和=c14 + b14

=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+ 1]

=

(c1a1)(b1c1 + a1)(c1 + b1)

=

(c1a1)[a1 – (c1b1)](c1 + b1)

=

(c1a1)(a1c1 + a1b1c12+ b12)

=

(c1a1)(a1c1 + a1b1a12)

=

(c1a1)(c1 + b1a1)。

已知天西邊股﹝簡稱邊股﹞= b2= b1

(a1 + b1c1) =

(c1 + b1a1) 。

坤月勾﹝又稱大差勾﹞= a10=

=

(c1a1) 。

邊股內減大差勾=b2a10 =

(c1 + b1a1) –

(c1a1)

=

(b1c1 + b12b1a1 – 2a1c1 +2a12)

=

(b1c1 + c12b1a1 – 2a1c1 + a12)

=

[c1(c1 +b1a1) – a1(c1 + b1a1)]

=

(c1a1)(c1 + b1a1)。

所以明弦股弦和 = 邊股內減大差勾。

又為邊勾邊弦差。

已知邊勾﹝川西﹞:a2 =

(c1 + b1a1) 。

邊股﹝天西﹞:b2 =

(c1 + b1a1) 。

邊弦﹝天川﹞:c2 =

(c1 + b1a1) 。

邊弦上勾弦較 = c2a2 =

(c1 + b1a1) –

(c1 + b1a1)

=

(c1 + b1a1)(c1a1)。

所以明弦股弦和 = 邊弦上勾弦較﹝即邊勾邊弦差﹞。

其較則半個虛黃方也。

“其較”指明弦股弦較。

明弦股弦較 = c14b14

=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(c1a1)(b1c1 + a1)(c1b1) 。

已知虛黃方 = b13 + a13c13

= –

(c1b1)(c1a1) +

(c1b1)(c1a1) +

(c1b1)(c1a1)

=

(c1b1)(c1a1)(– c1 + b1 + a1)

=

(a1 + b1c1)2(– c1 + b1 + a1)

=

(a1 + b1c1)2(a1 + b1c1)

=

(c1a1)(c1b1)(a1 + b1c1) 。

注意等式 (c1b1)(c1a1) =

(a1 + b1c1)2。“黃方”定義可參閱筆者另文。

半個虛黃方=

(c1a1)(b1c1 + a1)(c1b1)。

所以明弦股弦較 = 半個虛黃方。

弦較和即大差上勾弦較。

明弦弦較和 = c14 + (b14a14)= c14 + b14a14

c14 + b14a14

=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)
 –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(c1 + b1a1)

=

(c1a1)[b1 – (c1a1)][b1 + (c1a1)]

=

(c1a1)[b12 –(c1a1)2]

=

(c1a1)[b12c12a12+ 2c1a1]

=

(c1a1)[ – 2a12 + 2c1a1]

=

(c1a1)[ – a1 + c1]

=

(c1a1)2

大差上弦勾差= c10a10 =

(c1a1) –

(c1a1)

=

(c1a1)(c1a1)

=

(c1a1)2

所以明弦弦較和=大差上弦勾差。

其較則虛股也。

“其較”指弦較較。

明弦弦較較 = c14 – (b14a14) = c14b14 + a14

c14b14+ a14

=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(c1b1 + a1)

=

(c1a1)[a1 – (c1b1)][a1 + (c1b1)]

=

(c1a1)[a12 –(c1b1)2]

=

(c1a1)[a12c12b12+ 2c1b1]

=

(c1a1)[ – 2b12 + 2c1b1]

=

(c1b1)(c1a1)。

已舍太虛股:b13 =

(c1b1)(c1a1)。

所以明弦弦較較 = 虛股。

三事和即股圓差。

明弦三事和即弦和和 = c14 +b14 + a14

c14 + b14 + a14

=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)
 +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

+

]

=

(c1a1)(b1c1 + a1)(c1 + b1 + a1)

=

(c1a1)[a1 – (c1b1)][a1 + (c1 + b1)]

=

(c1a1)[a12 +a1c1 + a1b1a1c1 + a1b1c12 + b12]

=

(c1a1) × 2a1b1

= c1a1

已知股圓差 =b1 – (b1c1 + a1) = b1b1 + c1a1 = c1a1

所以明弦三事和= 股圓差。

其較則太虛上勾弦較。

“其較”指明弦三事較,又即弦和較。

明弦三事較 = 弦和較 =b14 + a14c14

b14 + a14c14

= –

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[ –

+

+

]

=

(c1a1)(b1c1 + a1)( – c1 + b1 + a1)

=

(c1a1)(b1c1 + a1)2

=

(c1a1)(c1b1)(c1a1)

=

(c1b1)(c1a1)2

注意等式 (c1b1)(c1a1) =

(a1 + b1c1)2

太虛勾弦較=c13a13=

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1b1)(c1a1)(c1a1)

=

(c1b1)(c1a1)2

所以明弦三事較 = 太虛上勾弦較。

又為虛股內減虛黃方也。

虛股內減個小黃方= b13 – (a13 + b13c13)

= c13a13

= 太虛勾弦較。

所以明弦三事較 = 虛股內減虛黃方也。

以下為《測圓海鏡》原文:

(0)

相关推荐