《測圓海鏡》勾股形日月南﹝14﹞五和五較說
《測圓海鏡》勾股形日月南﹝14﹞五和五較說
上傳書齋名:瀟湘館112 Xiāo XiāngGuǎn 112
何世強 Ho Sai Keung
提要:《測圓海鏡》之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。此等勾股形三邊形成一系列之恆等式,本文主要談及第14勾股形日月南相關之等式。
關鍵詞:明弦、明股、明勾、日月南
《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。
《測圓海鏡》之〈五和五較〉篇涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以a1、b1、c1 表之,其餘十四勾股形三邊勾股弦則分別以 ai、bi、ci 表之,其中 1 < i ≦ 15。但 ai、bi、ci 均可以 a1、b1、c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即 ai2 + bi2 = ci2。
有關以 a1、b1、c1 表 ai、bi、ci 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。
《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以a1、b1、c1 表之,其餘十四勾股形三邊勾股弦則分別以 ai、bi、ci 表之,其中 1 < i ≦ 15。但 ai、bi、ci 均可以 a1、b1、c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即
ai2 + bi2 = ci2。
以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。
本文談及之勾股形乃“日月南”﹝又稱為“明”,因日月為明之故也﹞,亦即以下兩圖帶棗紅色之二勾股形,日月南之斜邊“日月”是為明弦,其直角為 14,以 14 之位置為 “南”,其勾股與弦分別為 a14﹝月南﹞、b14﹝日南﹞ 與 c14﹝日月﹞。注意 14 之點亦可表示“日月南”勾股形。
注意以下之“日月南”勾股形之位置:
注意圓徑為 a1 + b1 – c1,見上圖左之東南西北圓。
以下為日月南勾股形之三事﹝三事,三邊之長也﹞:
南月勾﹝又稱明勾﹞:a14 =
(c1 – a1)(b1 – c1 + a1)。
日南股﹝又稱明股﹞:b14 =
(c1 – a1)(b1 – c1 + a1)。
日月為明弦﹝簡稱明弦﹞:c14 =
(c1 – a1)(b1 – c1 + a1)。
日月南勾股形之三事和或較亦可以以 a1、b1、c1 表之。
若勾股形之弦 = c,勾 = a,股 = b,則以下為五和五較:
(1) 勾股和:a + b
(2) 勾股較:b – a
(3) 勾弦和:a + c
(4) 勾弦較:c – a
(5) 股弦和:b + c
(6) 股弦較:c – b
(7) 弦較和:c + (b – a) ﹝較指勾股較,和指弦與勾股較之和﹞
(8) 弦較較:c – (b – a) ﹝第一較字指勾股較,第二較字指弦與勾股較之較﹞
(9) 弦和和:(a + b) + c ﹝第一和字指勾股和,第二和字指弦與勾股和之和。又稱為三事和﹞
(10) 弦和較:(a + b) – c ﹝第一和字指勾股和,第二較字指弦與勾股和之較。又稱為三事較﹞
以下為與明弦﹝勾股形日月南 (14)﹞有關之等式:
明弦勾股和即大差股內減明弦。其較則明弦內減虛股也。勾弦併即髙股。其較則髙股內少二之明勾也。股弦和即邊股內減大差勾。又為邊勾邊弦差。其較則半個虛黃方也。弦較和即大差上勾弦較。其較則虛股也。三事和即股圓差。其較則太虛上勾弦較。又為虛股內減虛黃方也。
以下為各條目之証明:
明弦勾股和即大差股內減明弦。
明弦勾股和=b14 + a14 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) 。
已知大差股 =天坤股﹝又稱大差股﹞:
b10 = b1 – (a1 + b1 – c1) = b1 – a1 – b1 + c1 = c1 – a1。
大差股內減明弦=b10 – c14
= (c1 – a1) –
(c1 – a1)(b1 – c1 + a1)
= (c1 – a1)[1–
(b1 – c1 + a1)]
=
(c1 – a1)[2a1b1 – c1b1 + c12 – c1a1]
=
(c1 – a1)[2a1b1 – c1b1 + a12 + b12 – c1a1]
=
(c1 – a1)[(a1 + b1)2 – c1(b1 + a1)]
=
(c1 – a1)(a1 + b1)(a1 + b1 – c1)。
所以明弦勾股和 = 大差股內減明弦。“內減”即以前者為被減數,後者為減數。
其較則明弦內減虛股也。
“其較”指明弦勾股較。
明弦勾股較=b14 – a14=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
–
]
=
(c1 – a1)(b1 – c1 + a1)(b1 – a1) 。
已知太虛股:b13 =
(c1 – b1)(c1 – a1)。
明弦內減虛股 = c14 – b13 =
(c1 – a1)(b1 – c1 + a1) –
(c1 – b1)(c1 – a1)
=
(c1 – a1)(b1 – c1 + a1) –
(b1 – c1 + a1)2
=
(b1 – c1 + a1)[
(c1 – a1) – (b1 – c1 + a1)]
=
(b1 – c1 + a1)(c12 – c1a1 – b12 + b1c1 – b1a1)
=
(b1 – c1 + a1)(a12 – c1a1+ b1c1 – b1a1)
=
(b1 – c1 + a1)[– a1(c1 – a1) + b1(c1 – a1)]
=
(b1 – c1 + a1)(c1 – a1)(b1 – a1) 。
所以明弦勾股較 = 明弦內減虛股。
勾弦併即髙股。
明弦勾弦併 = c14 + a14
=
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+ 1]
=
(b1 – c1 + a1)(c1 – a1)(c1 + a1)
=
(b1 – c1 + a1)(c12 – a12)
=
(b1 – c1 + a1)b12
=
(a1 + b1 – c1) 。
已知天旦股﹝又稱上髙股﹞= b6 =
=
(a1 + b1 – c1) 。
所以明弦勾弦併 = 髙股。
其較則髙股內少二之明勾也。
“其較”指明弦勾弦較。
明弦勾弦較 = c14 – a14
=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(b1 – c1 + a1)(c1 – a1)(c1 – a1)
=
(b1 – c1 + a1) (c1 – a1)2。
髙股內少二之﹝即乘以2﹞明勾 = b6 – 2 × a14。
b6 – 2 × a14 =
(a1 + b1 – c1) – 2 ×
(c1 – a1)(b1 – c1 + a1)
= (a1 + b1 – c1)[
–
(c1 – a1)]
=
(a1 + b1 – c1)[b12 – 2a1c1 + 2a12]
=
(a1 + b1 – c1)[c12 – 2a1c1 + a12]
=
(a1 + b1 – c1)(c1 – a1)2。
所以明弦勾弦較 = 髙股內少二之明勾。
股弦和即邊股內減大差勾。
明弦股弦和=c14 + b14
=
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+ 1]
=
(c1 – a1)(b1 – c1 + a1)(c1 + b1)
=
(c1 – a1)[a1 – (c1 – b1)](c1 + b1)
=
(c1 – a1)(a1c1 + a1b1 – c12+ b12)
=
(c1 – a1)(a1c1 + a1b1 – a12)
=
(c1 – a1)(c1 + b1 – a1)。
已知天西邊股﹝簡稱邊股﹞= b2= b1 –
(a1 + b1 – c1) =
(c1 + b1 – a1) 。
坤月勾﹝又稱大差勾﹞= a10=
=
(c1 – a1) 。
邊股內減大差勾=b2 – a10 =
(c1 + b1 – a1) –
(c1 – a1)
=
(b1c1 + b12 –b1a1 – 2a1c1 +2a12)
=
(b1c1 + c12 –b1a1 – 2a1c1 + a12)
=
[c1(c1 +b1 – a1) – a1(c1 + b1 – a1)]
=
(c1 – a1)(c1 + b1 – a1)。
所以明弦股弦和 = 邊股內減大差勾。
又為邊勾邊弦差。
已知邊勾﹝川西﹞:a2 =
(c1 + b1 – a1) 。
邊股﹝天西﹞:b2 =
(c1 + b1 – a1) 。
邊弦﹝天川﹞:c2 =
(c1 + b1 – a1) 。
邊弦上勾弦較 = c2 – a2 =
(c1 + b1 – a1) –
(c1 + b1 – a1)
=
(c1 + b1 – a1)(c1 – a1)。
所以明弦股弦和 = 邊弦上勾弦較﹝即邊勾邊弦差﹞。
其較則半個虛黃方也。
“其較”指明弦股弦較。
明弦股弦較 = c14 – b14
=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1) 。
已知虛黃方 = b13 + a13 – c13
= –
(c1 – b1)(c1 – a1) +
(c1 – b1)(c1 – a1) +
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)(– c1 + b1 + a1)
=
(a1 + b1 – c1)2(– c1 + b1 + a1)
=
(a1 + b1 – c1)2(a1 + b1 – c1)
=
(c1 – a1)(c1 – b1)(a1 + b1 – c1) 。
注意等式 (c1 – b1)(c1 – a1) =
(a1 + b1 – c1)2。“黃方”定義可參閱筆者另文。
半個虛黃方=
(c1 – a1)(b1 – c1 + a1)(c1 – b1)。
所以明弦股弦較 = 半個虛黃方。
弦較和即大差上勾弦較。
明弦弦較和 = c14 + (b14 – a14)= c14 + b14 – a14。
c14 + b14 – a14
=
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
–
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
–
]
=
(c1 – a1)(b1 – c1 + a1)(c1 + b1 – a1)
=
(c1 – a1)[b1 – (c1 – a1)][b1 + (c1 – a1)]
=
(c1 – a1)[b12 –(c1 – a1)2]
=
(c1 – a1)[b12 –c12 – a12+ 2c1a1]
=
(c1 – a1)[ – 2a12 + 2c1a1]
=
(c1 – a1)[ – a1 + c1]
=
(c1 – a1)2。
大差上弦勾差= c10 – a10 =
(c1 – a1) –
(c1 – a1)
=
(c1 – a1)(c1 – a1)
=
(c1 – a1)2。
所以明弦弦較和=大差上弦勾差。
其較則虛股也。
“其較”指弦較較。
明弦弦較較 = c14 – (b14– a14) = c14 – b14 + a14。
c14 – b14+ a14
=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
–
+
]
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1 + a1)
=
(c1 – a1)[a1 – (c1 – b1)][a1 + (c1 – b1)]
=
(c1 – a1)[a12 –(c1 – b1)2]
=
(c1 – a1)[a12 –c12 – b12+ 2c1b1]
=
(c1 – a1)[ – 2b12 + 2c1b1]
=
(c1 – b1)(c1 – a1)。
已舍太虛股:b13 =
(c1 – b1)(c1 – a1)。
所以明弦弦較較 = 虛股。
三事和即股圓差。
明弦三事和即弦和和 = c14 +b14 + a14。
c14 + b14 + a14
=
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
+
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
+
]
=
(c1 – a1)(b1 – c1 + a1)(c1 + b1 + a1)
=
(c1 – a1)[a1 – (c1 – b1)][a1 + (c1 + b1)]
=
(c1 – a1)[a12 +a1c1 + a1b1 – a1c1 + a1b1 – c12 + b12]
=
(c1 – a1) × 2a1b1
= c1 – a1。
已知股圓差 =b1 – (b1 – c1 + a1) = b1 – b1 + c1 – a1 = c1 – a1。
所以明弦三事和= 股圓差。
其較則太虛上勾弦較。
“其較”指明弦三事較,又即弦和較。
明弦三事較 = 弦和較 =b14 + a14 – c14。
b14 + a14 – c14
= –
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[ –
+
+
]
=
(c1 – a1)(b1 – c1 + a1)( – c1 + b1 + a1)
=
(c1 – a1)(b1 – c1 + a1)2
=
(c1 – a1)(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2。
注意等式 (c1 – b1)(c1 – a1) =
(a1 + b1 – c1)2。
太虛勾弦較=c13 – a13=
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – b1)(c1 – a1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2。
所以明弦三事較 = 太虛上勾弦較。
又為虛股內減虛黃方也。
虛股內減個小黃方= b13 – (a13 + b13– c13)
= c13 – a13
= 太虛勾弦較。
所以明弦三事較 = 虛股內減虛黃方也。
以下為《測圓海鏡》原文: