开源车牌数据集CCPD介绍

传统车牌检测和识别都是在小规模数据集上进行实验和测试,所获得的算法模型无法胜任环境多变、角度多样的车牌图像检测和识别任务。为此,中科大团队建立了CCPD数据集,这是一个用于车牌识别的大型国内停车场车牌数据集,该团队同时在ECCV2018国际会议上发表论文Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline, 论文和数据集下载地址:https://github.com/detectRecog/CCPD。该数据集在合肥市的停车场采集得来,采集时间早上7:30到晚上10:00。停车场采集人员手持Android POS机对停车场的车辆拍照并手工标注车牌位置。拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、阴雨天、雪天等等。CCPD数据集一共包含将近30万张图片,每种图片大小720x1160x3。一共包含8项,具体如下:类型图片数说明ccpd_base199998正常车牌ccpd_challenge10006比较有挑战性的车牌ccpd_db20001光线较暗或较亮ccpd_fn19999距离摄像头较远或较近ccpd_np3036没上牌的新车ccpd_rotate9998水平倾斜20-50°,垂直倾斜-10-10°ccpd_tilt10000水平倾斜15-45°,垂直倾斜15-45°ccpd_weather9999雨天、雪天或者雾天的车牌总共:283037张车牌图像部分照片示例如下:

CCPD数据集没有专门的标注文件,每张图像的文件名就是对应的数据标注(label)。例如:025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg由分隔符'-'分为几个部分:1) 025为区域,2) 95_113 对应两个角度, 水平95°, 竖直113°3) 154&383_386&473对应边界框坐标:左上(154, 383), 右下(386, 473)4) 386&473_177&454_154&383_363&402对应四个角点坐标5) 0_0_22_27_27_33_16为车牌号码 映射关系如下: 第一个为省份0 对应省份字典皖, 后面的为字母和文字, 查看ads字典.如0为A, 22为Y....具体的,省份对应标签如下:{"皖": 0,"沪": 1,"津": 2,"渝": 3,"冀": 4,"晋": 5,"蒙": 6,"辽": 7,"吉": 8,"黑": 9,"苏": 10,"浙": 11,"京": 12,"闽": 13,"赣": 14,"鲁": 15,"豫": 16,"鄂": 17,"湘": 18,"粤": 19,"桂": 20,"琼": 21,"川": 22,"贵": 23,"云": 24,"西": 25,"陕": 26,"甘": 27,"青": 28,"宁": 29,"新": 30}字母和数字对应的标签如下:{"a" : 0,"b" : 1,"c" : 2,"d" : 3,"e" : 4,"f" : 5,"g" : 6,"h" : 7,"j" : 8,"k" : 9,"l" : 10,"m" : 11,"n" : 12,"p" : 13,"q" : 14,"r" : 15,"s" : 16,"t" : 17,"u" : 18,"v" : 19,"w" : 20,"x": 21,"y" : 22,"z" : 23,"0" : 24,"1" : 25,"2" : 26,"3" : 27,"4" : 28,"5" : 29,"6" : 30,"7" : 31,"8" : 32,"9" : 33}

(0)

相关推荐