初二数学上册月考难点知识全汇总,月考必备!
开方开不尽的数,如 √7 ,3 √2等; 有特定意义的数,如圆周率π,或化简后含有π的数,如π /₃+8等; 有特定结构的数,如0.1010010001…等; 某些三角函数值,如sin60°等
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0
一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。 表示方法:记作 3√a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。
数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 求差比较:设a、b是实数 a-b>0↔a>b; a-b=0↔a=b; a-b<0↔a<b 。 求商比较法:设a、b是两正实数, 绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣↔a<b。 平方法:设a、b是两负实数,则 a2>b2↔a<b 。
被开方数的因数是整数,因式是整式 被开方数中不含能开得尽方的因数或因式
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。
点P(x,y)在第一象限→ x>0,y>0 点P(x,y)在第二象限 → x<0,y>0 点P(x,y)在第三象限 → x<0,y<0 点P(x,y)在第四象限 → x>0,y<0
点P(x,y)在x轴上 → y=0,x为任意实数 点P(x,y)在y轴上 → x=0,y为任意实数 点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点
点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等 点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数
位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。
点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y) 点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y) 点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
点P(x,y)到x轴的距离等于 ∣y∣ 点P(x,y)到y轴的距离等于 ∣x∣ 点P(x,y)到原点的距离等于 √x2+y2
关系式(解析)法
列表法
图象法
列表:列表给出自变量与函数的一些对应值。 描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。 连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。
一次函数y=kx+b的图像是经过点(0,b)的直线; 正比例函数y=kx的图像是经过原点(0,0)的直线。
当k>0时,图像经过第一、三象限,y随x的增大而增大; 当k<0时,图像经过第二、四象限,y随x的增大而减小。
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。 确定一个一次函数,需要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解这类问题的一般方法是待定系数法.
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同. 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
赞 (0)