初中数学“PA k·PB”型的最值问题

【问题背景】

“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当 k 值为 1 时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。

而当 k 取任意不为 1 的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。

此类问题的处理通常以动点P 所在图像的不同来分类,一般分为2 类研究。即点 P 在直线上运动和点 P 在圆上运动。

其中点 P 在直线上运动的类型称之为“胡不归”问题; 点 P 在圆周上运动的类型称之为“阿氏圆”问题。

本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。

【知识储备】

线段最值问题常用原理:

①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;

②两点间线段最短;

③连结直线外一点和直线上各点的所有线段中,垂线段最短;

(0)

相关推荐