不等式恒成立,试试“端点效应”吧!
中国移动
01:50
36%
微信(138)
学霸小张
嘿,兄弟,
知道啥叫“端点效应”么?
“端点效应”? 干啥滴??
尴尬了……
确实,
不少的同学都在打听:什么是“端点效应”?它到底可以用来干什么?
因为导数的综合题,实在是太难了,难到有时根本思考不过来。
那如果有捷径,谁又不想好好的用心参悟一下呢!
前两天学生做卷,又遇到了这类压轴题,分类讨论又无从下手,还有讨厌的三角函数,不少的孩子就觉得依然束手无策了。
什么样的题?
原题是这个样子的:
是不是再正规不过的导数题了?是不是再常见不过的恒成立?是不是也有同学觉得都做滥了这类……
还记得以前,讲过什么“三分思维”的处理策略:
分离函数——转化为切线找媒介
分离参数——转化无参数求最值
分类讨论——最最下策的求最值
对于端点效应,其实,以前也是有心了很长一段时间的,只是因为一直没有一个安静的时间码字,而耽搁了这个专题。
今天终是下定了决心再整理下,彻底解决这个问题吧。
其实,要说到“端点效应”,还是应该谈一下对函数图像的感性认识的。
我说的,当然就是函数中最本质、最重要的单调性问题了。
我们都知道,单调函数主要有两种形式:递增和递减。而递增和递减又各有三种不同的类型:
其实,如果不要很严谨,区分递增和递减,还有一种另类的方式,那就是看切线的斜率了。
而切线的斜率,自从有了导数,基本都是用导数的正负来恒量了。
切线与单调性
如果我说,函数在某点处的导数值为正,那么函数在该点左右的一个小范围内,一定是单调递增的。
你,觉得这是有道理的么?
画画、看看图像,再细细想想,也真的是有道理的。
有了这种感觉,我们就能得到下面的结论:
其实这个,也就算是端点效应的雏形了。
当然,还是通过具体的例题,来体会“端点效应”的基本思路。
从上面的过程不难看出,这种思路主要是利用了恒成立问题中,端点这一特定位置一定满足条件,从而找出不等式恒成立的必要条件。
只是,让人惊喜的是,这个必要条件,有时也恰好同时具备了充分性!
那么,这样得到的竟然就是充要条件了,这种状况,是不是纯属一种巧合呢?
答案当然是肯定的!
所以后面,才会有了相关的证明。
我将这种直接利用原函数定义域端点满足条件的效果,称之为“端点效应”的第一重修练。
以后遇到这种恒成立,是不是完全可以先用这种方法,缩小一下参数范围,再处理后续的问题呢。
嗯,如果不能用“三分思维”,这个思路绝对是值得一试的。
这个,就是前两天学生再次遇到的题了。
对于高二的学生,导数的综合题,其实我一直没有要求他们太多。
毕竟,具备深层次思考的能力,还是要经过高三一轮复习的洗礼,方能成就的。
如果单就这个题来说,和例1最大的区别,就是端点处的f(0)=0了,并没有如例1一样含有参数。
那么按照之前的分析,如果要求在端点x=0的后面,函数值f(x)>0恒成立,最起码的要求,函数在x=0处的切线斜率应当是非负的。
于是,这便有了“端点效应”的第二重修练。
因为由这种方式得到的参数范围,一定首先是必要条件的。所以,后面也同样,还是要认真的证明一下它的充分性。
唉,这题竟然是在端点处的函数值与导数值都为0了!
这时候,就只有继续求二阶导数啦。
也确实,好像现在好一点的导数综合,都要或深或浅地考查下二阶导数的。
其实,也好理解,思路是一样的,只是有了点递进的感觉而已。
这种情况,就可以称之为“端点效应”的第三重修练啦。
嗯,是不是很尴尬!
一路走来,都好好的,却在这里,“端点效应”竟然翻车啦,
而且还是高考真题!
最重要的,与十年前的高考真题,结构还是那么的相近!
时隔10年的高考卷,这期间的变化竟然都这么大了么?
其实,出现这种情况,也真的是很容易理解的。
毕竟按照这种方式求出的,也只是必要条件而已,同时具备充分性,一定是命题老师手下留情了。
但不管怎么说,如果这种思路可行,确实是比较方便的。
而且在客观题中,它可是大有用武之地哦!
不过因为真的有时可能端点效应会失效的,所以,最常规的思路还是一事实上要清楚的。
有兴趣的同学,可以认真参考下面的这篇推送,做更进一步的学习和探索。
链接:
完
学习是件很容易的事,但真的需要一贯的坚持。
奉上下面的一段文字,师生共勉。
(向上滑动查看内容)
致谢
我走了很远的路,吃了很多的苦,才将这份博士论文送到你的面前。二十二载求学路,一路风雨泥泞,许多不容易,如梦一场,仿佛昨天一家人才团聚过。
出生在一个小山坳里,母亲在我十二岁时离家。父亲在家的日子不多,即便在我病的不能自己去医院的时候,也仅是留下勉强够治病的钱后又走了。我十七岁时,他因交通事故离世后,我哭的稀里糊涂,因为再得重病时没有谁来管我了。同年,和我住在一起的婆婆病故,真的无能为力。她照顾我十七年,下葬时却仅是一副薄薄的棺材。另一个家族成员是老狗小花,为父亲和婆婆守过坟,后因我进城上高中而命不知何时何处所终。如兄长般的计算机启蒙老师邱浩没能看到我的大学录取通知书,对我照顾有加的师母也在不惑之年匆匆离开人世。每次回去看他们,这一座座坟茔都提示着生命的每一分钟都弥足珍贵。
人情冷暖,生离死别,固然让人痛苦与无奈,而贫穷则可能让人失去希望。家徒四壁,在煤油灯下写作业或者读书都是晚上最开心的事。如果下雨,保留节目就是用竹笋壳塞瓦缝防漏雨。高中之前的主要经济来源是夜里抓黄鳝、周末钓鱼、奍小猪崽和出租水牛,那些年里,方圆十公里的水田和小河都被我用脚测量过无数次。被狗和蛇追,半夜落水,因蓄电瓶进水而摸黑逃回家中;学费没交,黄鳝却被父亲偷卖了,然后买了肉和酒,都是难以避免的事。
人后的苦尚且还能克服,人前的尊严却无比脆弱。上课的时候,因拖欠学费而经常被老师叫出教室约谈。雨天湿漉着上课,屁股后面说不定还是泥。夏天光着脚走在滚烫的路上。冬天穿着破旧衣服打着寒颤穿过那条长长的过道领作业本。这些都可能 成为压垮骆驼的最后一根稻草。如果不是考试后常能从主席台领奖金,顺便能贴一墙奖状满足最后的虚荣心,我可能早已放弃。
身处命运的漩涡,耗尽心力去争取那些可能本就是稀松平常的东西,每次转折都显得那么的身不由己。幸运的是,命运到底还有一丝怜惜。进入高中后,学校免了全部学杂费,胡叔叔一家帮助解决了生活费。进入大学后,计算机终于成了我一生的事业与希望,胃溃疡和胃出血也终与我作别。
从家出发坐大巴需要两个半小时才能到县城,一直盼着起出大山。从炬光乡小学、大寅镇中学、仪陇县中学、绵阳市南山中学,到重庆的西南大学,再到中科院自动化所,我也记不清有多少次因为现实的压力而觉得自己快扛不下去了。这一路,信念很简单,把书读下去,然后走出去,不枉活一世。世事难料,未来注定还会面对更为复杂的局面。但因为有了这些点点滴滴,我已经有勇气和耐心面对任何困难和挑战,理想不伟大,只愿年过半百,归来仍是少年,希望还有机会重新认识这个世界,不辜负这一生吃过的苦。最后如果还能做出点让别人生活更美好的事,那这辈子就赚了。
贫困学子逆袭,博士论文“致谢”部分文字