国内人工智能产业发展面临的挑战

人工智能快速发展的今天,人工智能产业想要在国内得到发展,需要面对以下几方面挑战:

人工智能规模化基础算力支撑能力有限:多样化的人工智能产业应用数据和更复杂的深度学习算法,需要强大计算能力作为实现支撑,预计2021年数据量仍将保持爆炸性增长,人工智能算法模型将更趋复杂,需要更高水平的计算能力,但能提供规模化人工智能算力支持的国内企业还很有限,我国整体在人工智能算力基础设施方面准备不足。

开源开放的人工智能算法平台及框架缺失:人工智能产业发展以深度学习技术为主要引擎,开源开放的深度学习底层环境为技术的进化和创新提供了基础性保障,我国急需通过开源开放的方式扩大技术影响力、推动技术创新、聚焦产业生态发展,并为人工智能技术的产品溯源和系统可信评估提供新的解决途径。

产业数据标准化和互联互通水平严重不足:数据是人工智能迭代创新的核心要素,大数据、云、物联网、5G通信等新一代信息技术的发展产生了前所未有的海量数据,且数据的增长速度越来越快。我国人工智能技术虽然已在制造、交通、电子商务、金融、医疗等领域实现试点应用,但行业内上下游企业对产业数据的应用呈现各自为阵、重复用功、规模零星、标准不一、场景各异的特点,单一行业或企业的成功经验很难迁移,在事实上迟滞了广大中小企业利用人工智能技术提高生产力、实现高质量发展的步伐。

尚未形成嵌入行业场景的定制化人工智能基础设施建设评估框架:典型应用场景作为技术重要“试验场”和“加速器”,其评估、选择和打造将决定各行各业能否有效利用人工智能基础设施提升智能化水平、实现智能化转型。

细分应用领域的专业人才缺口较大:我国推进人工智能进一步发展仍面临深度学习人才荒的挑战。

(0)

相关推荐