从病因出发,一文读懂自身免疫性肝炎的发病机制及组织病理
自身免疫性肝炎( autoimmune hepatits,AIH )是一种对糖皮质激素治疗应答良好,但易复发、临床表现多样的肝脏疾病。该病比较少见,病因不明,以免疫介导的肝细胞损伤为主要特征[1]。由于自身免疫耐受机制受损,自身抗体与自身抗原发生免疫反应导致疾病的发生。目前研究揭示,免疫调节缺陷、环境诱发因素、遗传易感性等是该病可能的发病机制。组织学上主要表现为汇管区及汇管区周围炎症细胞浸润。炎症细胞主要包括T、B淋巴细胞和成熟的浆细胞。该病可逐渐出现进展性肝细胞破坏、纤维化,最终进展为肝硬化。然而,疾病发展速度和起病时疾病所处分期有明显个体差异。为了提高临床上对于AIH诊疗的准确率,本文将从AIH的病因入手,详细介绍其相关的发病机制及组织病理学改变。
AIH的发病机制
现在较为公认的AIH的发病机制是一种或多种环境或感染诱发因素在易感个体中触发了异常免疫反应。然而,除了罕见的单基因遗传疾病或个体药物/毒物暴露,尚未发现明确的单一致病因素。
目前认为该病是多种致病因素共同作用的结果。诱发自身免疫反应的确切机制尚未明确。与AIH相关的自身抗体,也常会在病毒性肝炎或其他炎性肝损伤期间一过性出现于血清中,这提示病毒感染可能导致通常受到保护的抗原被暴露,或通过分子模拟诱导产生自体交叉反应。肝肾微粒体1型抗体(抗LKM-1)与包括丙型肝炎病毒和巨细胞病毒在内的病毒肽序列的交叉反应,为分子模拟学说提供了证据[2]。
表1.AIH发病的可能病因
(一)聚焦T细胞
多项研究结果支持CD4+T细胞(也称为辅助T细胞)在AIH的发病机制中起核心作用(图1)。在AIH中有大量CD4+T细胞浸润,AIH患者的血清中CD4+T细胞及其特异性克隆产生的细胞因子水平也明显增加。这在2型AIH中尤为明显,在该亚型中已鉴定出对细胞色素P4502D6的肽序列特异的CD4+T细胞克隆[3]。在活动性AIH中,肝细胞表面被诱导表达组织相容性复合体(MHC) Ⅱ类分子,后者将抗原递呈给CD4+T细胞,目前鉴定出的最强的遗传关联证据是编码MHC Ⅱ类分子的HLA- D复合物。AIH患者外周血的细胞因子变化包括CD4+T细胞产生的几种细胞因子上调,几种影响CD4T细胞的单基因综合征也可产生AIH。
此外,肿瘤患者经免疫检查点抑制剂治疗及HIV治疗过程中的免疫重建阶段等,均可激活CD4+T细胞[4]。相反,对T细胞活性具有选择性抑制的免疫抑制药,如麦考酚酸,对AIH治疗有效。
图1.T细胞在AIH的发病机制中起核心作用
(二)免疫调节缺陷
多项临床研究表明,T细胞调节缺陷与AIH的发病相关。在患有1型自身免疫性多腺体综合征的患者中存在抗原呈递异常,即将原本只局限于非造血细胞的抗原呈递到发育中的T细胞。这是由于自身免疫调节基因AIRE突变所引起的。这导致了自身反应效应T细胞不能被清除,以及自身特异性调节性T细胞阳性选择失败。约20%AIH患者会表现出各种自身免疫现象[5]。
在小鼠中,破坏参与抗原呈递的其他基因也可能导致类似于人类AIH特征的综合征。调节性T细胞一项重要功能是通过拮抗性分子CTLA4介导的,其作用是减少效应T细胞共刺激。应用能够阻断这一机制的药物,如伊匹单抗可以促进机体对恶性肿瘤的免疫反应,但可能会导致自身免疫反应的发生,少数会发展为AIH。少数发生CTLA4基因突变的患者,可患有多系统自身免疫综合征,包括AIH。
有学者报告了1例携带GATA2基因错义突变的AIH患者,该突变导致抗原呈递细胞多种缺陷、易发生感染、循环中调节性T细胞绝对缺乏[7]。最后,致死性的Fas或其配体FasL的突变可能引起自身免疫性淋巴增殖综合征,其中某些病例伴有活化T细胞调亡异常和AIH。尽管如此,尚未检测到初治患者体内效应T细胞或调节性T细胞一致性功能缺陷。
(三)环境诱发因素
许多化合物可以诱发在临床和病理学上与AIH非常相似的过程,如甲基多巴、呋喃妥因、双氯芬酸、二烯酸,米诺环素等(见表2)[8-10] 。值得注意的是,药物诱导的AIH与药物性肝损伤最大的区别是,前者的肝脏损伤在停药后仍然会持续存在。有学者提出,这些药物的活性代谢物与细胞蛋白质如CYP450的成分结合,产生新的抗原,从而会加重炎症反应。
少数AIH病例与工业溶剂三氯乙烯相关,这已被来自AIH小鼠模型的研究证实[12]。如上所述,存在于不同病毒的同源物可能与CYP2D6有交叉反应性[2]。尽管如此,除病例报道外,尚未发现特定病毒感染与AIH发病之间的固定关系。
表2.与AIH样综合征相关的药物
(四)遗传易感性
患有肝外自身免疫性疾病或有自身免疫性疾病家族史者更易患AIH。尽管报道很少,但同卵双胞胎中AIH的发生频率显著高于异卵双胞胎(例如,参考文献[13]主张发病机制中的遗传成分)。
与其他许多自身免疫性疾病一样,AIH与特异性HLA-D等位基因相关[14]。某些等位基因可增加疾病易感性,并影响疾病的严重性。如在欧洲白人中,携带DRB1*03:01和DRB1*04:01会增加疾病易感性,前者与疾病程度重有关,而后者与发病较晚有关。然而,AIH与HLA的关联在不同种族人群之间亦有所不同,如日本人群中与HLA-DR4有关,拉丁美洲人群中与DRB1*13:01和DQB1*06有关[16,17]。
HLA等位基因如何影响AIH的易感性目前尚不清楚。一种理论认为, 在携带DRBI *0301、DRB3*0101和DRBI *0401等位基因的白人中,其HLA Ⅱ类分子结合沟中有对抗原识别至关重要的共同易感性决定因子[18]。可以借鉴来自其他疾病的研究:在原发性胆汁性胆管炎中,与疾病发病风险相关的HLA-DRB1 *08:01编码的T细胞表现出对特定的丙酮酸脱氢酶E2亚基肽的高亲和力,在临床尚可检测出特异性抗线粒体抗体(AMA)[19]。在阿巴卡韦超敏综合征中,特定HLA-D等位基因的抗原结合库被阿巴卡韦改变,使其表达不同的肽结合库,包括自身肽[20]。
近些年,全基因组研究发现欧洲人中1型AIH的发病与基因位点SH2B3或Lnk有关,以上基因位点已被证实与多种自身免疫性疾病相关,包括原发性硬化性胆管炎和原发性胆汁性胆管炎[21]。在功能上,SH2B3 是T细胞活化、肿瘤坏死因子和Janus激酶信号转导的负向调节因子,并且是正常造血所必需的。
还有很多研究探索了其他基因与AIH的关联,尽管除HLA外尚没有一项在全基因组分析中得到证实。其中较为有趣但未经证实的观察结果是,CTLA4的突变可能与1型AIH的发生相关[22]。值得注意的是,到目前为止,对2型AIH遗传风险的评估非常少。
AIH的组织病理学
肝穿刺活检和组织病理学检查对于AIH的诊断意义重大。AIH的病理学表现有一些特征,但并不是本病特有的,一些其他病因的肝脏疾病也可以有类似的表现,故需进行仔细鉴别。
AIH的典型特征是肝脏内淋巴浆细胞浸润,呈混合性单核细胞的异常聚集[23,24]。包括CD8+细胞毒性T细胞、CD4+辅助性T细胞、B淋巴细胞、成熟的浆细胞和嗜酸性粒细胞。其中浆细胞的出现对于本病诊断和鉴别诊断最有意义。炎症浸润多以汇管区为中心,常不伴有汇管区结构的破坏,少数患者( 10%)可伴有轻度胆管炎症,多不伴明显胆管损伤。在部分患者汇管区与周围肝实质之间的界板受到侵犯,称之为界面性肝炎。界面性肝炎可与气球样变和“玫瑰花结”相伴发。在一些特别严重病例,可能会出现明显的肝细胞融合坏死。另一个被认为很有提示意义但并非十分特异性的病理特征是淋巴细胞穿入现象[25],然而非肝脏病理医师对该特征的诊断较为困难。
经典的病理学改变
图2.56岁女性患者,患有急性起病的AIH,病理表现为界面性和小叶性肝炎混合浆细胞、淋巴细胞、嗜酸性粒细胞炎症细胞浸润,伴有气球样变和2级纤维化(HE染色)
图3.无症状的64岁老年男性患者,病理表现为明显的界面性肝炎和小叶内炎症,大量浆细胞浸润,伴有桥接纤维化和早期再生结节形成( HE染色)
图4.53岁女性患者,患有AIH合并非酒精性脂肪性肝炎、糖尿病,病理表现为明显的淋巴浆细胞浸润伴桥接纤维化、再生结节、气球样变、肝细胞脂变和窦周、小叶中心纤维化( HE染色,Masson 染色)
急性起病的AIH患者病理学特点与隐匿起病者存在差异。以暴发性肝衰竭起病者组织学上的界面性肝炎、小叶性肝炎、小叶结构紊乱、肝细胞坏死、中央静脉周围坏死和亚大块坏死等特点更加明显,但与慢性患者相比,纤维化和肝硬化程度相对较轻[26]。
除了上述肝细胞炎症性改变外,30%的患者在诊断时组织学上还可以表现为各种程度的肝纤维化,包括桥接纤维化和明确的肝硬化。肝细胞脂肪变并不是AIH的典型特征,但常会合并存在。如果有明显的胆汁淤积、铁或铜沉积或明显的肝细胞脂肪变,则需要考虑其他病因。AIH也可以与其他自身免疫性肝病重叠存在。
参考文献:
[1] Krawitt EL. Autoimmune hepatitis. N Engl J Med 354:54–66.
[2] Kerkar N, Choudhuri K, Ma Y, et al. Cytochrome P4502D6(193– 212): a new immunodominant epitope and target of virus/self crossreactivity in liver kidney microsomal autoantibody type 1-positive liver disease. J Immunol 170:1481–9.
[3] Ma Y, Bogdanos DP, Hussain MJ, et al. Polyclonal T-cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2. Gastroenterology 130:868–82.
[4] O’Leary JG, Zachary K, Misdraji J, Chung RT. De novo autoimmune hepatitis during immune reconstitution in an HIV- infected patient receiving highly active antiretroviral therapy. Clin Infect Dis 46:e12–14.
[5] Villase ?or J, Benoist C, Mathis D. AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev 204:156–64.
[6] Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Med 1–9.
[7] Webb G, Chen YY, Li KK, et al. Single-gene association between GATA-2 and autoimmune hepatitis: A novel genetic insight highlighting immunologic pathways to disease. J Hepatol 64(5):1190– 3.
[8] Bj ?ornsson E, Talwalkar J, Treeprasertsuk S, et al. Drug-induced autoimmune hepatitis: Clinical characteristics and prognosis. Hepatology 51:2040–8.
[9] ?Bj ?ornsson ES, Bergmann OM, Bj ?ornsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patientswith drug-induced liver injury in the general population of Iceland. Gastroenterology 144:1419–25.e1413.
[10] Lecoeur S, Andre C, Beaune PH. Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol 50:326–33.
[11] Beaune P, Dansette PM, Mansuy D, et al. Human anti- endoplasmic reticulum autoantibodies appearing in a drug- induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci USA 84:551–5.
[12] Cooper GS, Makris SL, Nietert PJ, Jinot J. Evidence of autoimmunerelated effects of trichloroethylene exposure from studies inmice and humans. Environ Health Perspect 117:696–702.
[13] van Gerven NM, Verwer BJ,Witte BI, et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol 49:1245–54.
[14] Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 66:25–39.
[15] van Gerven NMF, de Boer YS, Zwiers A, et al. HLA- DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun 16:247–52.
[16] Yoshizawa K, Ota M, Katsuyama Y, et al. Genetic analysis of theHLA region of Japanese patients with type 1 autoimmune hepatitis. J Hepatol 42:578–84.
[17] Bittencourt PL, Goldberg AC, Cancado EL, et al. Genetic heterogeneity in susceptibility to autoimmune hepatitis types 1 and 2. Am J Gastroenterol 1999;94:1906–13.
[18] Donaldson PT. Genetics of liver disease: immunogenetics and disease pathogenesis. Gut 53:599–608.
[19] Chow IT, James EA, Gates TJ, et al. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 is predicted by their structural motifs and correlates with disease risk. J Immunol 190:4516–24.
[20] Illing PT, Vivian JP, Dudek NL, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486: 554–8.
[21] de Boer YS, van Gerven NM, Zwiers A, et al. Genome- wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147:443– 52.e445.
[22] Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology 31:49–53.
[23] H ? ubscher SG. Role of liver biopsy in autoimmune liver disease. Diagn Histopathol 20:109–18.
[24] Burt AD, MacSween RNM, Portmann B, Ferrell LD. MacSween’s Pathology of the Liver, 6th edn. Edinburgh: Churchill Livingstone.
[25] Miao Q, Bian Z, Tang R, et al. Emperipolesis mediated by CD8 T cells is a characteristic histopathologic feature of autoimmune hepatitis. Clin Rev Allergy Immunol;48:226–35.
[26] Fujiwara K, Fukuda Y, Yokosuka O. Precise histological evaluation of liver biopsy specimen is indispensable for diagnosis and treatment of acute-onset autoimmune hepatitis. J Gastroenterol 43:951–8.
[3] Ma Y, Bogdanos DP, Hussain MJ, et al. Polyclonal T-cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2. Gastroenterology 130:868–82.
[4] O’Leary JG, Zachary K, Misdraji J, Chung RT. De novo autoimmune hepatitis during immune reconstitution in an HIV- infected patient receiving highly active antiretroviral therapy. Clin Infect Dis 46:e12–14.
[5] Villase ?or J, Benoist C, Mathis D. AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev 204:156–64.
[6] Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Med 1–9.
[7] Webb G, Chen YY, Li KK, et al. Single-gene association between GATA-2 and autoimmune hepatitis: A novel genetic insight highlighting immunologic pathways to disease. J Hepatol 64(5):1190– 3.
[8] Bj ?ornsson E, Talwalkar J, Treeprasertsuk S, et al. Drug-induced autoimmune hepatitis: Clinical characteristics and prognosis. Hepatology 51:2040–8.
[9] ?Bj ?ornsson ES, Bergmann OM, Bj ?ornsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patientswith drug-induced liver injury in the general population of Iceland. Gastroenterology 144:1419–25.e1413.
[10] Lecoeur S, Andre C, Beaune PH. Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol 50:326–33.
[11] Beaune P, Dansette PM, Mansuy D, et al. Human anti- endoplasmic reticulum autoantibodies appearing in a drug- induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci USA 84:551–5.
[12] Cooper GS, Makris SL, Nietert PJ, Jinot J. Evidence of autoimmunerelated effects of trichloroethylene exposure from studies inmice and humans. Environ Health Perspect 117:696–702.
[13] van Gerven NM, Verwer BJ,Witte BI, et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol 49:1245–54.
[14] Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 66:25–39.
[15] van Gerven NMF, de Boer YS, Zwiers A, et al. HLA- DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun 16:247–52.
[16] Yoshizawa K, Ota M, Katsuyama Y, et al. Genetic analysis of theHLA region of Japanese patients with type 1 autoimmune hepatitis. J Hepatol 42:578–84.
[17] Bittencourt PL, Goldberg AC, Cancado EL, et al. Genetic heterogeneity in susceptibility to autoimmune hepatitis types 1 and 2. Am J Gastroenterol 1999;94:1906–13.
[18] Donaldson PT. Genetics of liver disease: immunogenetics and disease pathogenesis. Gut 53:599–608.
[19] Chow IT, James EA, Gates TJ, et al. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 is predicted by their structural motifs and correlates with disease risk. J Immunol 190:4516–24.
[20] Illing PT, Vivian JP, Dudek NL, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486: 554–8.
[21] de Boer YS, van Gerven NM, Zwiers A, et al. Genome- wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147:443– 52.e445.
[22] Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology 31:49–53.
[23] H ? ubscher SG. Role of liver biopsy in autoimmune liver disease. Diagn Histopathol 20:109–18.
[24] Burt AD, MacSween RNM, Portmann B, Ferrell LD. MacSween’s Pathology of the Liver, 6th edn. Edinburgh: Churchill Livingstone.
[25] Miao Q, Bian Z, Tang R, et al. Emperipolesis mediated by CD8 T cells is a characteristic histopathologic feature of autoimmune hepatitis. Clin Rev Allergy Immunol;48:226–35.
[26] Fujiwara K, Fukuda Y, Yokosuka O. Precise histological evaluation of liver biopsy specimen is indispensable for diagnosis and treatment of acute-onset autoimmune hepatitis. J Gastroenterol 43:951–8.