“电子号”火箭运载能力有150千克吗?(发动机随笔3) | 洞穴之外
介绍液体火箭发动机的书籍很多,萨顿的《火箭发动机基础》和休泽尔的《液体火箭发动机现代工程设计》是经典之作,它们阐述了对发动机设计指标要求的实现过程,但这些指标要求又是怎么被提出来的呢?
对“电子号”火箭的进一步分析
+
在《新型发动机循环---让商业航天变得更容易》一文中,对“电子号”火箭和卢瑟福发动机进行了研判,并对火箭运载能力给出如下推测:一是现有电池水平比表格所列高出不少,电池重量没有估算的那么多;二是对比先锋号火箭参数,电子号火箭以电池重量为代价换取了发动机比冲和发动机研制的简单,的确达到了标称的运载能力;三是电子号所报的运载能力虚高,是考虑了后续电池改进后的运载能力,理由是以150kg的运载能力,却只发射3个总重约13kg的立方星,不符合常理。
写完这段后一直耿耿于怀,希望能做稍微多一点的计算以减少推测,向“文不可无观点,观点不可无论据”的定位靠近。
火箭飞行的齐奥尔科夫斯基公式
+
齐奥尔科夫斯基公式与单级入轨
康斯坦丁·爱德华多维奇·齐奥尔科夫斯基(Tsiolkovski,Konstantin Eduardovich, 1857.9.17~1935.9.19,苏联科学家,现代航天学和火箭理论的奠基人),在他的论文《用火箭推进器探索宇宙》,给出了没有空气阻力和地球引力影响下喷气推进后获得速度的公式。
其中Δv为速度增量,Isp为发动机比冲,M0为初始质量,M1为消耗推进剂后的末质量。
对于火箭来说,目前火箭结构系数一般为0.1,1t的子级结构质量为100kg,也即100kg结构可装载900kg推进剂。如采用氢氧推进剂,比冲达到4000m/s以上,则速度增量可达到9.2km/s,已经大于7.9km/s的第一宇宙速度。
但是,如果考虑地球引力和阻力损失(1.3~2km/s,《星际航行概论》),最终速度最多只能达到7km/s,比起第一宇宙速度仍差了一些。
设速度损失为2km/s,则入轨需要速度为9.9km/s,为具备运载能力,在不同比冲下对结构系数要求见下表
多级入轨与火箭最大级数
随着技术发展,发动机比冲增大,或者结构效率提高后,后续必将出现单级入轨的运载火箭。目前的运载火箭采用多级入轨技术以达到所需的速度。其公式为
与单级入轨公式相比,其主要区别在速度为多次累积而成。随着级数增加,对末速度能起到多大效果呢?
假设火箭重量100吨(90吨为燃料),卫星重量为2吨,所有子级的重量比上一级重量减半,而结构系数均为0.1,则可计算不同级数时喷气推进产生的速度增量见下图所示
弹道计算
+
计算程序网页
请将页面拉到最后,选择“阅读原文”。
对先锋号火箭弹道的仿真验证
“先锋号”运载火箭为3级运载火箭,一、二子级为液体推进级,三子级为固体级。箭体呈细长形,细长比约为19.25,结构质量比约为0.127。箭体全长21.95m,最大直径1.14m,起飞质量10.2t,起飞推力120.13kN,推重比1.2,到达500km圆轨道的运载能力为25kg。
一子级发动机,级长13.41m,直径1.14m,起飞质量8t,结构质量850kg,推进剂质量7.15t,结构质量比0.106。引擎为1台X-405液体发动机,采用液氧和煤油作为推进剂,地面总推力120.13kN,比冲2471N·s/kg,工作时间145s。
二子级发动机,级长5.79m,直径0.81m,起飞质量1.975t,结构质量400kg,推进剂质量1.575t,结构质量比0.203。引擎为1台AJ10-37液体发动机,采用白色发烟硝酸和偏二甲肼作为推进剂,真空推力33.34kN,比冲2618N·s/kg,工作时间112s。
三子级发动机,级长1.52m,直径0.46m,起飞质量200kg,结构质量25kg,推进剂质量175kg,结构质量比0.125。引擎为1台X-242固体发动机,采用钾—高氯酸盐混合物作为推进剂,真空推力11.77kN,比冲2256N·s/kg,工作时间35s。
整流罩长度2.14m,最大直径为0.81m,结构质量15kg。
程序输出结果与资料接近
弹道结果(不会弹道优化,程序角肯定不是最优,就当拿推进剂剩余量、大气阻力抵扣吧)
----------推进剂剩余量(kg)----------
149.30 27.71 0.62
----------分离时刻(s) 起飞质量(t)----------
0.000 144.000 194.000 265.500 574.000
10.211 2.211 1.559 0.221 0.044
----------时刻(s) 重量(kg) 高度(km) 速度(m/s) 轨道倾角(°)----------
0.000 10211.000 0.000 0.000 90.000
144.000 2211.000 58.208 1869.584 36.616
194.000 1559.254 114.781 2504.786 28.008
265.500 221.000 215.955 4497.063 24.140
269.924 221.000 224.027 4480.586 23.825
540.000 221.000 479.057 3947.343 1.397
542.848 206.144 479.307 4103.776 1.104
574.000 43.616 479.978 7605.549 0.220
对电子号火箭运载能力的分析
+
一级发动机303s是地面比冲吗?发动机地面比冲比F-1高还是低?
电池有多重?37kW是单台泵的功率密度还是两台泵的?
电子号小火箭的电池有多重,可能是很多人关心的问题。要驱动泵,对电池的功率密度和能量密度均有要求。功率密度是指在任意时刻将泵驱动起来所需的瞬时功率,单位为kW,能量密度是指泵长时间运行所需要的总能量,单位为kWh。就像电器的功率是100W,指的是功率密度,10小时总耗电1度,指的是能量密度。
功率密度代表的是能驱动泵的爆发力,能量密度是指长时间运行的耐久力。电泵循环中所需电池的重量为所需爆发力和耐久力的最大值,锂电池耐久力强但爆发力弱,电容则正好相反。
http://aviationweek.com/space/rocket-lab-unveils-battery-powered-turbomachinery
Each Rutherford engine has two electric motors the size of a soda can, Beck says, one for each propellant. The small motors generate 50 hp while spinning at 40,000 rpm, “not a trivial problem,” he says.
对电子号火箭弹道的仿真计算
Payload User’s Guide上的时序见下所示。
目前相关参数较少,凑了一下,假设一二级结构系数分别达到0.05、0.06(考虑到全面采用复合材料技术,系数取得极高,已经超出了几乎所有火箭),当有效载荷质量为37kg时,得到如下结果。
弹道结果(不会弹道优化,程序角肯定不是最优,就当拿推进剂剩余量、大气阻力抵扣吧)
----------推进剂剩余量(kg)----------
30.63 3.40
----------分离时刻(s) 起飞质量(t)----------
0.000 152.000 183.000 3157.000
13.269 2.361 2.154 0.290
----特征点时刻(s) 重量(kg) 高度(km) 速度(m/s) 轨道倾角(°)---
0.000 13269.380 0.000 0.000 90.000
78.688 8451.775 11.168 398.811 66.085
152.000 2361.269 69.233 1742.612 53.330
159.000 2361.269 78.786 1689.261 52.037
183.000 2154.004 109.931 1751.801 45.689
457.000 290.068 283.026 7796.305 0.074
3157.000 290.066 500.875 7549.164 -0.000
由于二级推进剂消耗完毕后,箭体结构+电池+有效载荷一共仅290kg,因此电子号当前宣传的有效载荷150kg可能性不大。那后续具备可能吗?完全可能。以最近比较火的超级电容的例,从功率角度计算只需要37e3/5000=7.4kg,如其能量密度真的能到达报道所说的铅酸电池水平(50Wh/kg),则一级单台需要量可降为37e3*120/3600/50=25kg,二级飞行时间稍长也仅需要60kg。一级减重800kg,二级减重60kg,综合后运载能力提升远大于100kg。
总结
+
背景简介:本文作者笔名洞穴之外,文章于2018年3月13日发表于微信公众号 理念世界的影子 (“电子号”火箭运载能力有150千克吗?),风云之声获授权转载。