ML之DT:机器学习根据大量数据,已知年龄、收入、是否上海人、私家车价格的一个人,预测是否有真实购买上海黄浦区楼房的能力
ML之DT:机器学习根据大量数据,已知年龄、收入、是否上海人、私家车价格的一个人,预测是否有真实购买上海黄浦区楼房的能力
输出结果
实现代码
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import tree
from sklearn import preprocessing
from sklearn.externals.six import StringIO
allElectronicsData = open(r'F:/AI/DL_month1201/01DTree/niu.csv', 'rt')
reader = csv.reader(allElectronicsData)
headers = next(reader)
print(headers)
featureList = []
labelList = []
for row in reader:
labelList.append(row[len(row)-1])
rowDict = {}
for i in range(1, len(row)-1):
rowDict[headers[i]] = row[i]
featureList.append(rowDict)
print(featureList)
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList) .toarray()
print("dummyX: " + str(dummyX))
print(vec.get_feature_names())
print("labelList: " + str(labelList))
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print("dummyY: " + str(dummyY))
clf = tree.DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(dummyX, dummyY)
print("clf: " + str(clf))
with open("niu.dot", 'w') as f:
f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f)
oneRowX = dummyX[0, :]
print("oneRowX: " + str(oneRowX))
newRowX = oneRowX
newRowX[0] = 1
newRowX[2] = 0
print("newRowX: " + str(newRowX))
predictedY = clf.predict([newRowX])
print("predictedY: " + str(predictedY))
相关文章
ML之DT:机器学习根据大量数据,已知年龄、收入、是否上海人、私家车价格的一个人,预测是否有真实购买上海黄浦区楼房的能力
赞 (0)