泡沫之季(下)---污水厂实战篇三
昨天的文章对生物泡沫的成因从微生物的角度进行了解释,对于污水处理厂来说,了解了生物泡沫的成因,还远远不够,对于每一个污水厂来说,需要的是对生物泡沫的控制,减少,或者消除。今天我们从几个方面来了解下生物泡沫的控制措施。
生物泡沫的控制措施从性质上有分为三种:1、物理方法。2、化学方法。3、生物方法。
1、物理方法,是指用物理手段进行的泡沫消除,比如用水喷洒打碎表面的泡沫层,采用刮板将泡沫刮走等方式。这些物理方法都是通过外加的措施对表面泡沫进行去除,但是由于对生物泡沫的起因的微生物作用很小,特别是混合液内的丝状菌基本不受影响,因此物理方法只能暂时打碎泡沫,不能根本的消除泡沫现象。
2、化学方法,是指在曝气池中投加消泡剂、杀菌剂等化学物质,对生物泡沫进行消除或者对产生生物泡沫的丝状菌进行灭杀,从而达到消除生物泡沫的目的。利用聚乙二醇、硅酮等消泡剂对生物泡沫进行消除,但是和物理作用相仿,没有灭杀产生生物泡沫的丝状菌,消泡剂只能起到暂时的作用。而杀菌剂氯气、次氯酸钠、双氧水由于无法具有单一的灭杀丝状菌类的功能,因此在使用过程中,对混合液中其他污水处理微生物都进行了灭杀,如果投加量控制不当,会造成生物反应池内的微生物大量减少,污水处理能力下降,导致出水超标。
3、生物方法,是指利用工艺调节的降低污泥龄,减少曝气量,回流污泥消化液,以及投加特殊生物等措施控制生物池内的丝状菌的生长,来控制泡沫的生成。这些生物控制方法,可以从根本上解决丝状菌的问题,但是由于在冬季期间,氨氮去除的硝化菌由于温度不适宜,需要低负荷长泥龄来弥补温度过低的因素,这个正好与诺卡氏菌所需要的环境一致,因此会造成为了保证氨氮的去除只能保持泡沫的存在的情况出现。回流消化液,投加特殊生物由于受到设计的局限,以及地域的问题,在现场实际运行中都存在一定的实施难度。
从上述方法的分析来看,不论那一种消除泡沫的方法都存在着一定的缺陷,在污水厂的管理实践中,那么应该怎么样消除或者改善生物泡沫的影响呢?这次我们从甲、乙两个厂的控制来讨论下生物泡沫的控制措施。
甲厂工艺为卡鲁赛尔2000型氧化沟工艺,共三条沟,两条为传统的卡鲁赛尔2000型氧化沟,一条为改良型的卡鲁赛尔2000型氧化沟,主要是在传统形式上加大的选择区的容积,甲厂在2013年1~3月期间处理水量为30000吨/日,使用两条传统氧化沟运行,污泥浓度在5000mg/L左右,开始出现泡沫,并伴随着活性污泥的膨胀。通过对现场运行工况的分析,认为产生泡沫和膨胀的原因,主要来自于系统的活性污泥MLSS过高,SRT过长,系统剩余污泥排泥不及时,导致丝状菌膨胀造成了这种情况。
在此期间,厂内工作人员采用了多种方式进行泡沫的消除,在氧化沟上架设了喷淋装置,增加曝气浮选,投加化学药剂等措施,但是收效甚微。2013年下半年,厂内利用新建的第三条氧化沟,对1、2#氧化沟进行了强制排泥,污泥浓度MLSS由初始的5000mg/L下降到3000mg/L,并且随着气温的升高,污泥泡沫和污泥膨胀逐渐减少,活性污泥恢复到正常状态,沉降比SV从膨胀期的99%,下降到30%左右,出水水质良好。2013年末到2014年初的冬季,为了保证氧化沟上泡沫不爆发,采取了低污泥浓度运行,冬季的MLSS控制在3500mg/L,泡沫偶又出现,但基本通过控制都能得到消除,但是氨氮的情况不佳。2014年随着水量增加,厂内启动了三条氧化沟运行,3#氧化沟的生物选择区对丝状菌的抑制作用非常明显,同时由于水量在40000~60000m3/d之间,没有达到系统满负荷,污水在生物处理系统内的停留时间延长,为了达到去除泡沫的工况,在2014年底采取了更低的MLSS工艺控制,从三号沟投用后,三条氧化沟一直保持了2500mg/L的MLSS浓度,整个2014年冬季到2015年初,没有出现污泥泡沫,出水氨氮由于停留时间的保证和曝气量的充足,除去特殊进水以外,都保持了稳定达标。从2014年后,甲厂维持低浓度的MLSS,有效的控制了氧化沟上生物泡沫的产生,同时也保证了出水水质的达标。
从甲厂的运行调整来看,甲厂通过降低污泥龄,但是有较长的系统停留时间,可以保持低浓度的常年运行,这样有效的控制了生物泡沫的产生,同时也保证了水质。特别是改良型的卡鲁赛尔2000型氧化沟的生物选择作用,也对丝状菌的产生起到了很好的抑制作用。因此通过这几年的调控和资料积累,甲厂逐步摸索到生物泡沫的有效控制手段,就是低污泥龄和低MLSS,抑制丝状菌的生长繁殖,从而控制生物泡沫。
乙厂为A2O工艺,设计处理能力为10000吨/d,实际进水在7~8000吨/d,接近满负荷。乙厂在多年的运行中,冬春交际期间A2O池上生物泡沫周期性的出现大量堆积,导致二沉池表面漂浮一层污泥层。严重影响了出水水质。2016年底至2017年年初,周期性的生物泡沫再次爆发,大量的褐色的生物泡沫堆积在好氧区,内外回流带的生物泡沫在厌氧区和缺氧区形成污泥壳层,在2017年2月份进行了剩余污泥大量排放,污泥浓度从3500mg/L下降到2000mg/L左右,生物泡沫明显减少,厌氧区和缺氧区污泥壳层逐步消失,好氧区出现混合液液面,但是出水氨氮完全失去处理效果,几乎和进水氨氮40mg/L浓度一致。
为了尽快恢复出水氨氮达标,乙厂加大了曝气量,增加了曝气风机的开启台数,同时减少了剩余污泥排放量,增加A2O池内的活性污泥浓度,使活性污泥浓度重新回到3000mg/L左右,A2O池好氧区面上泡沫重新堆积,厌氧和缺氧区上又会恢复了污泥壳层。乙厂主要对泡沫进行了物理喷水打散泡沫的方式进行消泡处理。每日清晨开启喷淋水泵,人工进行喷洒消泡,但是只能暂时的消除部分泡沫。直到进入三月下旬和四月份后,气温逐步升高到15℃以上,好氧区泡沫颜色开始变白,并开始露出混合液水面,厌氧区和缺氧区的污泥壳层也逐步消除,露出水面。
从乙厂的运行控制来看,对污泥泡沫的控制采取降污泥浓度的方式,会导致出水氨氮的超标,后期为了氨氮达标,进行污泥浓度的人为提高,大幅度增加污泥浓度,直接导致了丝状菌的大量繁殖,造成生物泡沫的堆积,采用人工喷淋的方式,只能暂时缓解,不能从根源上消除生物泡沫的影响。
甲乙两个厂在运行中都遇到了生物泡沫问题,都采取了降低污泥浓度的方式,也都出现了明显的效果,但是甲厂能够保持出水水质的达标,乙厂就出现了氨氮超标。通过对比,可以得到,甲乙厂最大的不同在于停留时间的不同,甲厂的停留时间计算为30小时左右,乙厂停留时间为20小时左右,停留时间的不一致,导致乙厂在降低污泥浓度以后,污染物得不到有效的处理,虽然消除了污泥泡沫,但是出现了氨氮超标。
这两个厂的对比来看,我们可以得出生物泡沫在一定程度上可以控制的,但是在不同的厂内条件下,必须采取不同的控制手段,但是生物泡沫的爆发一定是有一定的诱因的,我们污水处理厂的运行在一年中特别是水温变化在13~15℃期间,一定要保持平稳的过渡,不能人为的造成不必要的工艺异常,诱发丝状菌爆发,导致生物泡沫。这个平稳过渡的运行,需要我们运行人员掌握更多的运行数据资料,在不同时间采用不同的控制参数,才能更好的稳定的保证处理效果和控制工艺异常。