找了好久,终于发现一款好用到炸的「图像分割」神器!

加个“星标”,每天下午18:03,一起学技术

自动驾驶近些年简直火炸了天,小编大胆的预测这个拥有2021CVPR自动驾驶场景理解赛道冠军算法的项目马上要火爆业界!

而这个项目的Star星标图也如坐上了火箭直角起飞!

着急的小伙伴可以直接传送门查看项目详情并Star收藏:

  • 传送门:https://github.com/PaddlePaddle/PaddleSeg

经过小编的深入研究,发现这个项目不仅有全球计算机视觉顶会 CVPR2021 AutoNUE 挑战赛的冠军语义分割算法, 还涵盖业界最主流的DeepLab、UNet等23个系列60多个语义分割算法及预训练模型,以及实时高精度人像分割算法PPSeg、精细化的分割PaddleSeg-Matting、全景分割Panoptic-DeepLab算法!还有基于交互式分割算法的智能标注工具 EISeg!

Web 视频会议

Matting

全景分割

交互式分割

简而言之,这个项目可以全方位、立体式地满足开发者在图像分割方向各个维度的需求。不得不大说一声:
下面,小伙伴们赶紧擦擦口水,来听小编给大家讲讲上面这些花里胡哨的算法都是干嘛的,又有什么过人之处~

产业级人像分割模型PPSeg

人像分割技术的应用可谓无所不在!比如抠图、视频会议换背景、人体姿态分析等等。但往往数据来源和算法部署环境非常多样,有手机的、固定摄像头的、移动车载摄像头的等等,不仅如此,不同的光照条件也为人像分割算法带来了极大的考验。基于这样的产业难点,PaddleSeg团队推出了在大规模人像数据上训练的人像分割PPSeg模型,并针对服务端、移动端、Web端(Paddle.js)多种使用场景进行了不同的优化,都获得超群的效果。
近期“百度视频会议”也上线了基于PPSeg的虚拟背景功能,通过Padddle.js实现了在web端部署,支持用户在视频会议时进行背景切换。
小伙伴们可以直接去百度首页体验百度视频会议,直观感受PaddleSeg和Paddle.js的能力。

精细化的分割解决方案

PaddleSeg-Matting

随着分割技术的发展,人们对分割的精细化的要求也越来越高。比如在一些影视行业,绿幕作为拍摄的换背景常用的工作,但目标不在绿幕前拍摄,是否还能达到很好的背景分割功能呢?
答案是:能!
最近PaddleSeg团队开源的精细化分割解决方案PaddleSeg-Matting就很好的解决了这个问题。将目标的发丝实现了精准的分割。

交互式分割智能标注工具

业界对于人工智能有这么一句话:“深度学习有多智能、背后就有多少人工”。这句话直接说出了深度学习从业者心中的痛处,毕竟模型的好坏数据占据着很大的因素,但是数据的标注成本却让很多从业的小伙伴们感到头疼。
因此,PaddleSeg团队联合PaddleCV-SIG成员基于RITM算法,推出了业界首个高性能的交互式分割工具EISeg。它可以通过一系列的绿色点(正点)和红色点(负点)实现对目标对象边缘精准的分割,可以用于图像编辑、半自动标注,从而实现精细化标注,抠图,辅助图像后期处理(例如PS)等场景应用。
PaddleSeg还支持对RITM模型的训练、预测及交互的全流程。我们利用百度自建人像数据集对模型Finetune,得到预测速度快,精度高,交互点少的人像交互式分割模型。

全景分割Panoptic-DeepLab

全景分割是图像分割领域在近年来兴起的一个新领域,它融合了语义分割和实例分割的技术,可以识别出已知可数对象(例如车、动物等)的实例语义信息;而对于未知不可数对象(例如沙滩、天空等)识别出单纯的语义信息。
而PaddleSeg提供的全景分割算法--Panoptic DeepLab以简单的网络结构实现了精度、速度双超越,开创了全景分割算法新方向,也是当前Cityscape全景分割榜首采用的算法。
你还在等什么?!如此用心研发的高水准产品,还不赶紧Star收藏上车!
  • 传送门:https://github.com/PaddlePaddle/PaddleSeg

(0)

相关推荐