高中数学21种解题方法与技巧汇总

1解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。

2因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元→换元→解元→还元

5待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:
①设 ②列 ③解 ④写

6复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0     两种情况为或型
②配成平方型:
(----)2+(----)2=0     两种情况为且型

7数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组
(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8化简二次根式

基本思路是:把√m化成完全平方式。即:

9观察法

10代数式求值

方法有:
(1)直接代入法
(2)化简代入法
(3)适当变形法(和积代入法)
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用'分类讨论法’,其原则是:
(1)按照类型求解
(2)根据需要讨论
(3)分类写出结论

12恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15图像法

讨论函数性质的重要方法是图像法——看图像、得性质。
定义域  图像在X轴上对应的部分
值   域   图像在Y轴上对应的部分
单调性
从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
最   值  图像最高点处有最大值,图像最低点处有最小值
奇偶性  关于Y轴对称是偶函数,关于原点对称是奇函数

16函数、方程、不等式简的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17一元二次方程的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

 解集横轴中

18一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:
(1)定义域没有特别限制时---记忆法或结论法;
(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

20最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

21穿线法

穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。
(0)

相关推荐

  • 与代数方程有关的阅读理解问题(1)

    在代数方程中,我们通过运用"化归"的数学思想,利用"降次"的基本策略,利用换元法.代入法.因式分解法,解决了一系列的代数方程.在本文中,我们将通过阅读理解,结合 ...

  • 【专题分析】不等式求最值问题

    今天我们专门分析一下不等式求最值问题,今天分析的这些方法我都把常规的方法踢出去了,比如说二次函数最值,均值不等式等等.下面的这些方法可能大家平时学习的过程中用得比较少或者不太了解的地方. 方法一:定义 ...

  • 高中数学21种解题方法与技巧全汇总,太实用了!

    今天为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦! 01 解决绝对值问题 主要包括化简.求值. ...

  • 干货 | 高中数学21种解题方法与技巧全汇总,太实用了!

    今天,数数为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦! 01 解决绝对值问题 主要包括化简. ...

  • 干货!高中数学21种解题方法与技巧全汇总,太实用了!

    今天,数数为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦! 01 解决绝对值问题 主要包括化简. ...

  • 干货丨高中数学21种解题方法与技巧全汇总

    专业.公益.综合.情怀 乐学数韵(ID/抖音:Vlxsy8) 教研.解题.资源     Q群:314559613  明天就是祖国七十周年生日,亲爱的祖国,乐学数韵微信公号(ID:Vlxsy8)全体成员 ...

  • 高中数学21种解题方法与技巧全汇总,太实用了!

    今天,三好君为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简.求值.方 ...

  • 2021高考数学冲刺:高中数学21种解题方法与技巧大汇总

    小编整理2021高考数学冲刺之高中数学21种解题方法与技巧,和大家分享,为您的高考助一臂之力. 1 解决绝对值问题 主要包括化简.求值.方程.不等式.函数等题,基本思路是:把含绝对值的问题转化为不含绝 ...

  • 高中数学21种解题方法与技巧全汇总

    高中数学21种解题方法与技巧全汇总

  • 高中数学21种解题方法与技巧全汇总,太实用!

    今天,李元昊老师为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦! 解决绝对值问题 主要包括化简. ...

  • 2021高考数学21种解题方法与技巧全汇总,太实用!

    专业的高中数学学习平台 每天17:00不见不散 今天,特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记 ...