碳化硅和氮化镓的区别在哪? 2024-05-03 23:29:13 近年来,研究人员和技术人员一直在共同努力,寻找优化器件能效和提高器件性能的解决方案。尽管微控制器在数码设备上已经达到了非凡的节能水平,但是在功率器件中使用新材料也取得了最佳效果。不久前,人们认为SiC和GaN器件的应用相当困难。但2018年,这些技术的优势开始应用到现实生活中(比如采用SiC MOSFET的Tesla Model 3主逆变器)。这项新技术成功的原因是什么?SiC和GaN被称为“宽带隙半导体”(WBG),因为将这些材料的电子从价带扩散到导带需要能量: 其中硅(Silicon)所需能量为1.1eV,碳化硅(SiC)则需3.3eV,氮化镓(GaN)则需3.4eV. 这就带来了更高的击穿电压,在某些应用中可高到1200-1700V。通过合适的生产工艺,WBG展现出以下优点:●极低的内部电阻,与同类硅器件相比,效率可提高70%●低电阻可改善热性能(最高工作温度增加了)和散热,并可获得更高的功率密度●散热得到优化,与同类硅器件相比,就可以采用更简单的封装、尺寸和重量也大大减少●极短的关断时间(GaN器件接近于零)能够工作于非常高的开关频率,而且工作温度也更低传统的电力电子设备使用的各类器件都可以用WBG器件代替。而传统的硅器件在许多应用领域都达到了极限。显然,WBG技术是未来电力电子的根基,将为各种领域的创新应用奠定基础。SiC和GaN的区别不同的应用所需的功率和频率性能不同,无论硅器件还是新型WBG器件,每种类型的器件都有其用武之地。尽管在概念层面上有相似之处,但SiC和GaN器件彼此不可互换,二者因系统的工作要求和使用参数不同而有很大差别。尤其需要指出,SiC器件能承受更高的电压,高达1200伏及以上,而GaN器件则能承受的电压和功率密度要低一些;另一方面,由于GaN器件的关断时间几乎为零(由于具有高电子迁移率,其dV/dt电压大于100V/s,而MOSFET硅器件仅50V/s),特别适用于非常高频的应用,可达到极高的能效和性能。但这些理想的特性也会给应用带来麻烦:如果器件的寄生电容不接近于零,就会产生数十安培的电流尖峰,而在电磁兼容测试阶段出现问题。由于可以采用TO-247和 TO-220封装,SiC能够在封装方面发挥更多优势,因为这两种封装可以让新的SiC器件快速替换IGBT和MOSFET器件。而采用SMD封装(更轻、更小但还比较新)的GaN则能提供更优性能。另一方面,这两种器件面临的共同挑战都与栅极驱动器的设计与构造有关。栅极驱动器应当能够充分利用特定的分量特征,同时又要关注寄生分量(必须最小化以避免性能降低)和适当的电压水平(希望类似于驱动传统硅器件的电压水平)。就成本而言,SiC器件现在更便宜,也更普及,因为它们是在GaN之前出现的。然而,不难想象,成本一方面与生产工艺有关,同时也跟市场需求有关,因此市场价格会趋于平稳。由于GaN衬底的生产成本较高,因此采用GaN“通道”的器件都以硅为衬底。最近,瑞典林克平大学(University of Linkóping)与其剥离公司SweGaN合作进行了一些研究,按照SiC衬底和新的晶圆生长工艺(称为跨晶异质外延,可防止出现结构缺陷)的想法,获得了可与SiC器件相媲美的最大电压,但工作频率可以达到硅基GaN的水平。这项研究还表明,采用这一机制能够改善热管理、获得3kV以上的垂直击穿电压,以及比目前解决方案小一个数量级的通态阻抗等性能。应用和市场WBG器件的应用领域仍然是一个小众市场,研发人员仍然需要更好地了解如何最大限度地发挥其潜力。其最大的新技术市场是二极管市场,但WBG预计将在未来5年内充斥晶体管市场。潜在应用已在酝酿之中。据预测,电动车、电信网络和消费电子市场是最合适的目标市场。根据销售预测,最有利可图的市场将是涉及电动车和自动驾驶汽车的市场,其中WBG器件将用于逆变器、车载充电设备(OBC)和防撞系统(LiDAR)。鉴于这类器件的热特性和能率,可以很好地满足蓄能器性能优化的要求,人们自然会作出这种预测。在电信方面,5G将成为WBG的驱动力。待安装的数百万个基站将需要更高的能效,并且尺寸将变得更小巧轻便,以显著提高性能并降低成本。消费电子市场也将大量采用这类新型器件。移动设备的日益普及和快速充电需求将驱动无线供电和充电设备对新型器件的需求。SiC和GaN器件英飞凌已经开发了一系列的SiC和GaN MOSFET器件及其CoolSiC和CoolGaN系列驱动器。值得注意的是,其FF6MR12W2M1_B11半桥式模块它能够在1200伏的电压下输出高达200安培的电流,而其RDS(on)阻抗仅为6 mΩ。该模块配备了两个SiC MOSFET和一个NTC温度传感器,适用于UPS和电机控制应用,可以改善能效和散热(图1)。Microsemi的产品线中也有一个类似的解决方案,即相脚SiC MOSFET模块。该模块采用了SP6LI系列器件,能够承受高达1700V的电压和大于200A的电流;AlN衬底可确保更好的热管理,两个SiC肖特基二极管可以提升开关频率。Wolfspeed公司也在紧追市场,其CAB450M12XM3半桥式器件可以控制高达1200V的电压和450A的电流,得益于其第三代MOSFETs和SiN衬底的结合,使其能够在175°C的连续模式下工作。当我们细看GaN市场时,显然可用的器件种类是有限的。GanSystem产品目录中的GS-065-150-1-D是一款采用Island专利技术的晶体管,能够在超过10MHz的开关频率下控制高达650V的电压和150A的电流。最后,继宣布推出TP90H050WS场效应管后,Transphorm公司开始致力于采用TO-247封装的GaN器件的开发,其工作电压高达900V,上升和下降时间约为10nS(图2)。图1:FF6MR12W2M1_B11半桥式模块图2:TP90H050WS场效应管还有什么值得期待?或许人们还需要等待一段时间才能感受到WBG器件的惊人潜力,但其应用场景正在演变,制造商亦开始提供可靠的解决方案。可以确信的是:WBG器件作为一种新型工具解决了功率器件设计师在这个以“效率”为口号的时代所面临的问题,这将直接给市场带来巨大冲击。 作者:Davide Di Gesualdo 赞 (0) 相关推荐 一文带你认识第三代半导体材料双雄——碳化硅VS氮化镓 进入21世纪以来,随着摩尔定律的失效大限日益临近,寻找半导体硅材料替代品的任务变得非常紧迫.在多位选手轮番登场后,有两位脱颖而出,它们就是氮化镓(GaN)和碳化硅(SiC)--并称为第三代半导体材料的 ... 三代半导体 转载 第三代半导体以氮化镓(GaN).碳化硅(SiC).氧化锌(ZnO).金刚石为四大代表,是5G时代的主要材料.在无线通信.汽车电子.电网.高铁.卫星通信.军工雷达.航空航天等领域应用中具备硅基无可比拟的 ... 最近热炒的“氮化镓”到底是什么? 第三代半导体材料以氮化镓.碳化硅.氧化锌.金刚石为代表,是5G时代的主要材料,其中氮化镓和碳化硅的市场和发展空间最大. 出品|每日财报 作者|刘雨辰 受到外围市场和国际环境的影响,A股近期走势非常弱, ... 关于碳化硅,你不能不知的10件事! 碳化硅 (SiC) 是一种由硅 (Si) 和碳 (C) 组成的半导体化合物,属于宽带隙 (WBG) 材料系列.它的物理结合力非常强,使半导体具有很高的机械.化学和热稳定性.宽带隙和高热稳定性允许 Si ... SiC和GaN在EV/HEV的应用前景有多大? 虽然SiC在Tesla和比亚迪汉上实现了量产,但整体应用市场而言,相对IGBT依然处于绝对的劣势,近年来随着GaN技术的日渐成熟,来一起认识下SiC和GaN在新能源汽车领域的潜在市场 1 核心需求 E ... 下一代功率半导体争夺战开打 来源:内容由半导体行业观察(ID:icbank)编译自「semiengineering」,谢谢. 经过多年的研发,几家供应商正在接近出货基于下一代宽带隙技术的功率半导体和其他产品. 这些器件利用了新材 ... 功率器件的演变 射频测试技术周(5月10-14日) 射频专家在线分享:下一代射频芯片.滤波器.毫米波.相控阵方案等 随着世界围内中产阶级的增长以及车辆.暖通空调和工业驱动的电气化推进,对电力的需求不断增加.每个电力阶 ... 最新超级结MOSFET技术还能否与第三带半导体一教高下? 现在碳化硅 (SiC) 和氮化镓 (GaN) 产品都在市场上产生影响,很容易认为硅 (Si) 在电力电子产品中不再占有一席之地.这些宽带隙 (WBG) 材料提供的优势使基于硅的器件过时了.虽然几乎可以 ... 5G绝配,充电必备,“氮化镓”如何撩起雷军的“镓”国梦 "我特别特别喜欢这个GaN(氮化镓)充电器,摄影师来多拍几张照片."在小米10手机的在线发布会上,雷军丝毫没有掩饰对小米GaN充电器的喜爱. 小巧.高效.发热低,是雷军给予小米Ga ... 碳化硅与氮化镓材料的同与不同 半导体是一种介于导体与绝缘体之间的材料,它具有导电性可控的特点.当半导体受外界光和热的刺激时,其导电能力将会有显著变化,在纯净半导体中加入微量杂质,其导电能力会急剧增强.自科学家法拉第发现硫化银以来, ... 一文看懂小米33W、55W和65W三款氮化镓充电器的区别 自GaN氮化镓快充市场爆发以来,MI小米已经陆续推出了65W.55W和33W三款氮化镓充电器,其中前两款分别是随同小米10 Pro/小米11手机一起发布的,而且55W氮化镓充电器还是小米11套装版的标 ... 5G射频元件诞生半导体材料“新天王”氮化镓和碳化硅接棒成热门 一台智能手机里面装了多少关键芯片?最为人所知的是处理器 AP.存储芯片 DRAM 和 NAND Flash; 其次是肩负信号接收.处理.传输的通信元件,主要由基频芯片.射频收发器.射频前端及天线四大部 ... 达摩院预测,2021年,以氮化镓、碳化硅... 达摩院预测,2021年,以氮化镓.碳化硅为代表的第三代半导体迎来应用大爆发:碳基技术突破加速柔性电子发展:AI或将有效解决疫苗和药物研发周期长.成本高等问题:已有不少上市公司提前站上风口. 南哥对其他 ... [视频]对比氮化镓FET与碳化硅MOSFET技术 目前,业内正在寻找性能超越现有硅基技术的电源解决方案,通常会考虑氮化镓或者碳化硅宽禁带技术.Transphorm的氮化镓技术的可靠性目前达到现场失效率3.3dppm以及FIT 1.0,在许多方面甚至超 ... 【今日头条】当硅基代替碳化硅 氮化镓变得无可挑剔 由于氮化镓技术在低功耗.小尺寸等方面具有独特的优势,近年来在功率器件市场大受欢迎.然而,其居高不下的成本使得氮化镓技术的应用受到很多限制.近日,在2016年的电子设计创新大会上,高性能模拟射频.微波. ... 富士通首次展示氮化铝衬底生长氮化镓应用潜力 当前在GaN外延片方面,主要有两种衬底技术,分别是GaN-on-Si(硅基氮化镓)和GaN-on-SiC(碳化硅基氮化镓),其中GaN-on-SiC则结合了SiC优异的导热性和GaN的高功率密度和低损 ... 氮化镓产业链深度解析 查行业数据,就用行行查